메뉴 건너뛰기




Volumn 14, Issue 2, 2005, Pages 109-123

Mapping mineralization probabilities using multilayer perceptrons

Author keywords

Mineral exploration; Mineral potential mapping; Neural networks

Indexed keywords


EID: 23944453937     PISSN: 15207439     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11053-005-6955-z     Document Type: Article
Times cited : (25)

References (26)
  • 1
    • 0002099561 scopus 로고
    • Supervised learning of probability distributions by neural networks
    • Anderson, D. Z., ed., Neural Information Processing Systems, New York
    • Baum, E. B., and Wilczek, F., 1988, Supervised learning of probability distributions by neural networks, in Anderson, D. Z., ed., Neural Information Processing Systems: Am. Ins. Physics, New York, p. 52-61.
    • (1988) Am. Ins. Physics , pp. 52-61
    • Baum, E.B.1    Wilczek, F.2
  • 3
    • 0001723507 scopus 로고
    • Geographic information systems for geoscientists
    • Pergamom Press, Oxford
    • Bonham-Carter, G. F., 1994, Geographic information systems for geoscientists: modeling with GIS: Pergamom Press, Oxford, 398 p.
    • (1994) Modeling with GIS
    • Bonham-Carter, G.F.1
  • 4
    • 23944483793 scopus 로고    scopus 로고
    • Use of noise to augment training data: A neural network method of mineralpotential mapping in regions of limited known deposit examples
    • Brown, W. M., Gedeon, T. D., and Groves, D. I., 2003, Use of noise to augment training data: a neural network method of mineralpotential mapping in regions of limited known deposit examples: Natural Resources Research, v. 12, no. 2, p. 141-152.
    • (2003) Natural Resources Research , vol.12 , Issue.2 , pp. 141-152
    • Brown, W.M.1    Gedeon, T.D.2    Groves, D.I.3
  • 5
    • 0033816133 scopus 로고    scopus 로고
    • Artificial neural networks: A new method for mineral prospectivity mapping
    • Brown, W. M., Gedeon, T. D., Groves, D. I., and Barnes, R. G., 2000, Artificial neural networks: a new method for mineral prospectivity mapping: Jour. Australian Earth Sciences, v. 47, no. 4, p. 757-770.
    • (2000) Jour. Australian Earth Sciences , vol.47 , Issue.4 , pp. 757-770
    • Brown, W.M.1    Gedeon, T.D.2    Groves, D.I.3    Barnes, R.G.4
  • 6
    • 23944495904 scopus 로고
    • Victorian geology excursion guide
    • Canberra, Australia
    • Clark, I., and Cook, B., eds., 1988, Victorian geology excursion guide: Australian Acad. Science, Canberra, Australia, 489 p.
    • (1988) Australian Acad. Science
    • Clark, I.1    Cook, B.2
  • 8
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G., 1989, Approximation by superpositions of a sigmoidal function: Math. Control, Signals, and Systems, v. 2, p. 303-314.
    • (1989) Math. Control, Signals, and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 11
    • 0001858551 scopus 로고    scopus 로고
    • Mineral favorability mapping: A comparison of artificial neural networks, logistic regression, and discriminant analysis
    • Harris, D., and Pan, G., 1999, Mineral favorability mapping: a comparison of artificial neural networks, logistic regression, and discriminant analysis: Natural Resources Research, v. 8, no. 2, p. 93-109.
    • (1999) Natural Resources Research , vol.8 , Issue.2 , pp. 93-109
    • Harris, D.1    Pan, G.2
  • 12
    • 20944440743 scopus 로고    scopus 로고
    • A comparative analysis of favorability mappings by weights of evidence, probabilistic neural networks, discriminant analysis, and logistic regression
    • Harris, D., Zurcher, L, Stanley, M., Marlow, J., and Pan, G., 2003, A comparative analysis of favorability mappings by weights of evidence, probabilistic neural networks, discriminant analysis, and logistic regression: Natural Resources Research, v. 12, no. 4, p. 241-256.
    • (2003) Natural Resources Research , vol.12 , Issue.4 , pp. 241-256
    • Harris, D.1    Zurcher, L.2    Stanley, M.3    Marlow, J.4    Pan, G.5
  • 13
    • 0001041635 scopus 로고
    • Learning algorithms and probability distributions in feed-forward and feed-back networks
    • Hopfield, J. J., 1987, Learning algorithms and probability distributions in feed-forward and feed-back networks: Proc. Nat. Acad. Sciences, v. 84, p. 8428-8433.
    • (1987) Proc. Nat. Acad. Sciences , vol.84 , pp. 8428-8433
    • Hopfield, J.J.1
  • 14
    • 0024880831 scopus 로고
    • Multilayer feed-forward networks are universal approximators
    • Hornick, K., Stinchcombe, M., and White, H., 1989, Multilayer feed-forward networks are universal approximators: Neural Networks, v. 2, no. 5, p. 359-66.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornick, K.1    Stinchcombe, M.2    White, H.3
  • 15
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Møller, M., 1993, A scaled conjugate gradient algorithm for fast supervised learning: Neural Networks, v. 6, no. 4, p. 523-533.
    • (1993) Neural Networks , vol.6 , Issue.4 , pp. 523-533
    • Møller, M.1
  • 16
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen, E., 1962, On estimation of a probability density function and mode: Ann. Math. Statistics, v. 33, no. 3, p. 1065-1076.
    • (1962) Ann. Math. Statistics , vol.33 , Issue.3 , pp. 1065-1076
    • Parzen, E.1
  • 17
    • 23944502615 scopus 로고    scopus 로고
    • Artificial neural networks for mineral-potential mapping: A case study from the Aravalli Provence' Western India
    • Porwal, A., Carranza, E. J., and Hale, M. 2003, Artificial neural networks for mineral-potential mapping: a case study from the Aravalli Provence' Western India: Natural Resources Research, v. 12, no. 3, p 155-171.
    • (2003) Natural Resources Research , vol.12 , Issue.3
    • Porwal, A.1    Carranza, E.J.2    Hale, M.3
  • 20
    • 0000523292 scopus 로고    scopus 로고
    • Application of a feed-forward neural network in the search for Kuroko deposits in the Hokoruko District, Japan
    • Singer, D. A., and Kouda, R., 1996, Application of a feed-forward neural network in the search for Kuroko deposits in the Hokoruko District, Japan: Math. Geology, v. 28, no. 8, p. 1017-1023.
    • (1996) Math. Geology , vol.28 , Issue.8 , pp. 1017-1023
    • Singer, D.A.1    Kouda, R.2
  • 21
    • 0002770312 scopus 로고    scopus 로고
    • Classification of mineral deposits into types using mineralogy with a probabilistic neural network
    • Singer, D. A., and Kouda, R., 1997, Classification of mineral deposits into types using mineralogy with a probabilistic neural network: Nonrenewable Resources, v. 6, no. 1, p. 27-32.
    • (1997) Nonrenewable Resources , vol.6 , Issue.1 , pp. 27-32
    • Singer, D.A.1    Kouda, R.2
  • 22
    • 0001393761 scopus 로고    scopus 로고
    • A comparison of the weights-of-evidence method and probabilistic neural networks
    • Singer, D. A., and Kouda, R., 1999, A comparison of the weights-of-evidence method and probabilistic neural networks: Natural Resources Research, v. 8, no., 4, p. 287-298.
    • (1999) Natural Resources Research , vol.8 , Issue.4 , pp. 287-298
    • Singer, D.A.1    Kouda, R.2
  • 23
    • 0141462964 scopus 로고    scopus 로고
    • unpubl. docforal dissertation, School Electrical and Electronic Systems Engineering, Queensland Univ. Technology, Australia
    • Skabar, A., 2000, Inductive learning techniques for mineral potential mapping: unpubl. docforal dissertation, School Electrical and Electronic Systems Engineering, Queensland Univ. Technology, Australia, 225 p.
    • (2000) Inductive Learning Techniques for Mineral Potential Mapping
    • Skabar, A.1
  • 24
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht, D. F., 1990, Probabilistic neural networks: Neural Networks, v. 3, no. 1, p. 109-118.
    • (1990) Neural Networks , vol.3 , Issue.1 , pp. 109-118
    • Specht, D.F.1
  • 26
    • 23944432719 scopus 로고
    • Castlemaine Goldfield: Castlemaine-Chewton, Fryers Creek 1:10 000 Maps
    • Victoria Energy and Minerals
    • Willman, C. E. 1995, Castlemaine Goldfield: Castlemaine-Chewton, Fryers Creek 1:10 000 Maps: Victoria Energy and Minerals, Geol. Survey Rept. 106.
    • (1995) Geol. Survey Rept. , vol.106
    • Willman, C.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.