메뉴 건너뛰기




Volumn 54, Issue 4, 2010, Pages 1138-1150

Bayesian nonparametric quantile regression using splines

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN; CUBIC SPLINE; ENVIRONMENTAL DATA; MARKOV CHAIN MONTE CARLO ALGORITHMS; METROPOLIS-HASTINGS ALGORITHM; NON-PARAMETRIC; QUANTILE REGRESSION; SIMULATED DATA; SMOOTHING PARAMETER;

EID: 73149115061     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2009.09.004     Document Type: Article
Times cited : (48)

References (33)
  • 1
    • 73149115843 scopus 로고    scopus 로고
    • Optimal acceptance rates for Metropolis-Hastings algorithms: Moving beyond 0.234
    • submitted for publication
    • Bédard, M., 2006. Optimal acceptance rates for Metropolis-Hastings algorithms: Moving beyond 0.234. Annals of Statistics (submitted for publication)
    • (2006) Annals of Statistics
    • Bédard, M.1
  • 6
    • 0038826037 scopus 로고    scopus 로고
    • A Bayesian approach to hybrid splines non-parametric regression
    • Dias R., and Gamerman D. A Bayesian approach to hybrid splines non-parametric regression. Journal of Statistical Computing and Simulation 72 4 (2002) 285-297
    • (2002) Journal of Statistical Computing and Simulation , vol.72 , Issue.4 , pp. 285-297
    • Dias, R.1    Gamerman, D.2
  • 7
    • 0034315586 scopus 로고    scopus 로고
    • On spline estimators and prediction intervals in nonparametric regression
    • Doksum K., and Koo J. On spline estimators and prediction intervals in nonparametric regression. Computational Statistics & Data Analysis 35 1 (2000) 67-82
    • (2000) Computational Statistics & Data Analysis , vol.35 , Issue.1 , pp. 67-82
    • Doksum, K.1    Koo, J.2
  • 8
    • 16244419383 scopus 로고    scopus 로고
    • Approximate Bayesian inference for quantiles
    • Dunson D.B., and Taylor J.A. Approximate Bayesian inference for quantiles. Nonparametric Statistics 17 3 (2005) 385-400
    • (2005) Nonparametric Statistics , vol.17 , Issue.3 , pp. 385-400
    • Dunson, D.B.1    Taylor, J.A.2
  • 10
    • 0001582213 scopus 로고    scopus 로고
    • Inference and monitoring convergence
    • Gilks W.R., Richardson S., and Spiegelhalter D.J. (Eds), Chapman and Hall, London
    • Gelman A. Inference and monitoring convergence. In: Gilks W.R., Richardson S., and Spiegelhalter D.J. (Eds). Markov Chain Monte Carlo in Practice (1996), Chapman and Hall, London 131-143
    • (1996) Markov Chain Monte Carlo in Practice , pp. 131-143
    • Gelman, A.1
  • 11
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences (with discussion)
    • Gelman A., and Rubin D. Inference from iterative simulation using multiple sequences (with discussion). Statistical Science 7 (1992) 457-511
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.2
  • 12
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green P.J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 (1995) 711-732
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 16
    • 84925105967 scopus 로고    scopus 로고
    • Cambridge University Press, Cambridge
    • Koenker R. Quantile Regression (2005), Cambridge University Press, Cambridge
    • (2005) Quantile Regression
    • Koenker, R.1
  • 17
    • 0001652263 scopus 로고
    • Quantile smoothing splines
    • Koenker R., Ng P., and Portnoy S. Quantile smoothing splines. Biometrika 81 4 (1994) 673-680
    • (1994) Biometrika , vol.81 , Issue.4 , pp. 673-680
    • Koenker, R.1    Ng, P.2    Portnoy, S.3
  • 18
    • 73149087332 scopus 로고    scopus 로고
    • Koenker, R, 2008. quantreg: Quantile Regression version 4.17, Vienna, Austria
    • Koenker, R., 2008. quantreg: Quantile Regression (version 4.17). Vienna, Austria. http://www.r-project.org
  • 20
    • 67949114183 scopus 로고    scopus 로고
    • Bayesian semiparametric modelling in quantile regression
    • Kottas A., and Krnjajić M. Bayesian semiparametric modelling in quantile regression. Scandinavian Journal of Statistics 36 (2009) 297-319
    • (2009) Scandinavian Journal of Statistics , vol.36 , pp. 297-319
    • Kottas, A.1    Krnjajić, M.2
  • 21
    • 65749107527 scopus 로고    scopus 로고
    • Smoothing sample extremes: The mixed model approach
    • Laurini F., and Pauli F. Smoothing sample extremes: The mixed model approach. Computational Statistics & Data Analysis 53 11 (2009) 3842-3854
    • (2009) Computational Statistics & Data Analysis , vol.53 , Issue.11 , pp. 3842-3854
    • Laurini, F.1    Pauli, F.2
  • 23
    • 1642370803 scopus 로고    scopus 로고
    • Slice sampling
    • Neal R.M. Slice sampling. Annals of Statistics 31 3 (2003) 705-767
    • (2003) Annals of Statistics , vol.31 , Issue.3 , pp. 705-767
    • Neal, R.M.1
  • 24
    • 0030192103 scopus 로고    scopus 로고
    • An algorithm for quantile smoothing splines
    • Ng P. An algorithm for quantile smoothing splines. Computational Statistics & Data Analysis 22 2 (1996) 99-118
    • (1996) Computational Statistics & Data Analysis , vol.22 , Issue.2 , pp. 99-118
    • Ng, P.1
  • 28
    • 0001995852 scopus 로고
    • Some aspects of the spline smoothing approach to nonparametric curve fitting
    • Silverman B.W. Some aspects of the spline smoothing approach to nonparametric curve fitting. Journal of the Royal Statistical Society: Series B 47 (1985) 1-52
    • (1985) Journal of the Royal Statistical Society: Series B , vol.47 , pp. 1-52
    • Silverman, B.W.1
  • 29
    • 73149119658 scopus 로고    scopus 로고
    • Bayesian nonparametric quantile regression using splines for modelling wave heights
    • Keble College, University of Oxford, UK
    • Thompson, P., Reeve, D., Cai, Y., Stander, J., Moyeed, R., 2008. Bayesian nonparametric quantile regression using splines for modelling wave heights. In: FloodRisk 2008 Conference. Keble College, University of Oxford, UK
    • (2008) FloodRisk 2008 Conference
    • Thompson, P.1    Reeve, D.2    Cai, Y.3    Stander, J.4    Moyeed, R.5
  • 31
    • 67349106738 scopus 로고    scopus 로고
    • Quantile regression without the curse of unsmoothness
    • Wang Y., Shao Q., and Zhu M. Quantile regression without the curse of unsmoothness. Computational Statistics & Data Analysis 53 10 (2009) 3696-3705
    • (2009) Computational Statistics & Data Analysis , vol.53 , Issue.10 , pp. 3696-3705
    • Wang, Y.1    Shao, Q.2    Zhu, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.