메뉴 건너뛰기




Volumn 22, Issue 1, 2005, Pages 45-82

Super-critical boundary bubbling in a semilinear Neumann problem

Author keywords

Bubble solutions; Critical Sobolev exponent; Liapunov Schmidt reduction; Mean curvature; Neumann boundary conditions

Indexed keywords

BOUNDARY CONDITIONS; FUNCTIONS; THEOREM PROVING; TOPOLOGY;

EID: 12344330875     PISSN: 02941449     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.anihpc.2004.05.001     Document Type: Article
Times cited : (68)

References (34)
  • 1
    • 0002199454 scopus 로고
    • The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honour of G. Prodi
    • Adimurthi, and G. Mancini The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honour of G. Prodi Scuola Norm. Sup. Pisa 1991 9 25
    • (1991) Scuola Norm. Sup. Pisa , pp. 9-25
    • Adimurthi1    Mancini, G.2
  • 2
    • 0002356162 scopus 로고
    • Geometry and topology of the boundary in the critical Neumann problem
    • Adimurthi, and G. Mancini Geometry and topology of the boundary in the critical Neumann problem J. Reine Angew. Math. 456 1994 1 18
    • (1994) J. Reine Angew. Math. , vol.456 , pp. 1-18
    • Adimurthi1    Mancini, G.2
  • 3
    • 0000437039 scopus 로고
    • The role of the mean curvature in semilinear Neumann problem involving critical exponent
    • Adimurthi, G. Mancini, and S.L. Yadava The role of the mean curvature in semilinear Neumann problem involving critical exponent Comm. Partial Differential Equations 20 3-4 1995 591 631
    • (1995) Comm. Partial Differential Equations , vol.20 , Issue.34 , pp. 591-631
    • Adimurthi1    Mancini, G.2    Yadava, S.L.3
  • 4
    • 43949176286 scopus 로고
    • Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity
    • Adimurthi, F. Pacella, and S.L. Yadava Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity J. Funct. Anal. 113 1993 318 350
    • (1993) J. Funct. Anal. , vol.113 , pp. 318-350
    • Adimurthi1    Pacella, F.2    Yadava, S.L.3
  • 5
    • 84972493844 scopus 로고
    • Characterization of concentration points and L∞-estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent
    • Adimurthi, F. Pacella, and S.L. Yadava Characterization of concentration points and L ∞ -estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent Differential Integral Equations 8 1 1995 41 68
    • (1995) Differential Integral Equations , vol.8 , Issue.1 , pp. 41-68
    • Adimurthi1    Pacella, F.2    Yadava, S.L.3
  • 6
    • 0041792894 scopus 로고    scopus 로고
    • The effect of geometry of the domain boundary in an elliptic Neumann problem
    • D. Cao, and E.S. Noussair The effect of geometry of the domain boundary in an elliptic Neumann problem Adv. Differential Equations 6 8 2001 931 958
    • (2001) Adv. Differential Equations , vol.6 , Issue.8 , pp. 931-958
    • Cao, D.1    Noussair, E.S.2
  • 7
    • 0000650326 scopus 로고    scopus 로고
    • Multipeak solutions for a singularly perturbed Neumann problem
    • E.N. Dancer, and S. Yan Multipeak solutions for a singularly perturbed Neumann problem Pacific J. Math. 189 2 1999 241 262
    • (1999) Pacific J. Math. , vol.189 , Issue.2 , pp. 241-262
    • Dancer, E.N.1    Yan, S.2
  • 8
    • 0042854704 scopus 로고    scopus 로고
    • "Bubble-tower" radial solutions in the slightly supercritical Brezis-Nirenberg problem
    • M. del Pino, J. Dolbeault, and M. Musso "Bubble-tower" radial solutions in the slightly supercritical Brezis-Nirenberg problem J. Differential Equations 193 2 2003 280 306
    • (2003) J. Differential Equations , vol.193 , Issue.2 , pp. 280-306
    • Del Pino, M.1    Dolbeault, J.2    Musso, M.3
  • 9
    • 0001663580 scopus 로고    scopus 로고
    • Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting
    • M. del Pino, and P. Felmer Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting Indiana Univ. Math. J. 48 3 1999 883 898
    • (1999) Indiana Univ. Math. J. , vol.48 , Issue.3 , pp. 883-898
    • Del Pino, M.1    Felmer, P.2
  • 10
    • 0038306934 scopus 로고    scopus 로고
    • Two-bubble solutions in the super-critical Bahri-Coron's problem
    • M. del Pino, P. Felmer, and M. Musso Two-bubble solutions in the super-critical Bahri-Coron's problem Calc. Var. PDE 16 2 2003 113 145
    • (2003) Calc. Var. PDE , vol.16 , Issue.2 , pp. 113-145
    • Del Pino, M.1    Felmer, P.2    Musso, M.3
  • 11
    • 0033233496 scopus 로고    scopus 로고
    • On the role of mean curvature in some singularly perturbed Neumann problems
    • M. del Pino, P. Felmer, and J. Wei On the role of mean curvature in some singularly perturbed Neumann problems SIAM J. Math. Anal. 31 1 1999 63 79
    • (1999) SIAM J. Math. Anal. , vol.31 , Issue.1 , pp. 63-79
    • Del Pino, M.1    Felmer, P.2    Wei, J.3
  • 12
    • 0001508926 scopus 로고
    • Further studies on Emden's and similar differential equations
    • R.H. Fowler Further studies on Emden's and similar differential equations Quart. J. Math. 2 1931 259 288
    • (1931) Quart. J. Math. , vol.2 , pp. 259-288
    • Fowler, R.H.1
  • 13
    • 84974002244 scopus 로고
    • (N+2)/(N-2)
    • M. Grossi A class of solutions for the Neumann problem - Δ u + λ u = u (N + 2) / (N - 2) Duke Math. J. 79 2 1995 309 334
    • (1995) Duke Math. J. , vol.79 , Issue.2 , pp. 309-334
    • Grossi, M.1
  • 14
    • 0003226251 scopus 로고    scopus 로고
    • Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory
    • M. Grossi, A. Pistoia, and J. Wei Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory Calc. Var. Partial Differential Equations 11 2 2000 143 175
    • (2000) Calc. Var. Partial Differential Equations , vol.11 , Issue.2 , pp. 143-175
    • Grossi, M.1    Pistoia, A.2    Wei, J.3
  • 15
    • 0000860177 scopus 로고    scopus 로고
    • Multi-peak solutions for a semilinear Neumann problem
    • C. Gui Multi-peak solutions for a semilinear Neumann problem Duke Math. J. 84 1996 739 769
    • (1996) Duke Math. J. , vol.84 , pp. 739-769
    • Gui, C.1
  • 16
    • 0032194927 scopus 로고    scopus 로고
    • Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent
    • C. Gui, and N. Ghoussoub Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent Math. Z. 229 3 1998 443 474
    • (1998) Math. Z. , vol.229 , Issue.3 , pp. 443-474
    • Gui, C.1    Ghoussoub, N.2
  • 17
    • 0036258520 scopus 로고    scopus 로고
    • Estimates for boundary-bubbling solutions to an elliptic Neumann problem
    • C. Gui, and C.-S. Lin Estimates for boundary-bubbling solutions to an elliptic Neumann problem J. Reine Angew. Math. 546 2002 201 235
    • (2002) J. Reine Angew. Math. , vol.546 , pp. 201-235
    • Gui, C.1    Lin, C.-S.2
  • 18
    • 0002610597 scopus 로고    scopus 로고
    • Multiple interior peak solutions for some singularly perturbed Neumann problems
    • C. Gui, and J. Wei Multiple interior peak solutions for some singularly perturbed Neumann problems J. Differential Equations 158 1 1999 1 27
    • (1999) J. Differential Equations , vol.158 , Issue.1 , pp. 1-27
    • Gui, C.1    Wei, J.2
  • 19
    • 0002057398 scopus 로고    scopus 로고
    • Multiple spike layers in the shadow Gierer-Meinhardt system: Existence of equilibria and the quasi-invariant manifold
    • M. Kowalczyk Multiple spike layers in the shadow Gierer-Meinhardt system: existence of equilibria and the quasi-invariant manifold Duke Math. J. 98 1 1999 59 111
    • (1999) Duke Math. J. , vol.98 , Issue.1 , pp. 59-111
    • Kowalczyk, M.1
  • 20
    • 0000984635 scopus 로고    scopus 로고
    • On a singularly perturbed equation with Neumann boundary condition
    • Y.Y. Li On a singularly perturbed equation with Neumann boundary condition Comm. Partial Differential Equations 23 3-4 1998 487 545
    • (1998) Comm. Partial Differential Equations , vol.23 , Issue.34 , pp. 487-545
    • Li, Y.Y.1
  • 21
    • 0013080765 scopus 로고    scopus 로고
    • n and related problems, part I
    • Y.Y. Li Prescribing scalar curvature on S n and related problems, part I J. Differential Equations 120 1996 541 597
    • (1996) J. Differential Equations , vol.120 , pp. 541-597
    • Li, Y.Y.1
  • 23
    • 0035635114 scopus 로고    scopus 로고
    • Locating the peaks of solutions via the maximum principle, I. The Neumann problem
    • C.-S. Lin Locating the peaks of solutions via the maximum principle, I. The Neumann problem Comm. Pure Appl. Math. 54 2001 1065 1095
    • (2001) Comm. Pure Appl. Math. , vol.54 , pp. 1065-1095
    • Lin, C.-S.1
  • 24
    • 0002542873 scopus 로고
    • Large amplitude stationary solutions to a chemotaxis system
    • C.-S. Lin, W.-M. Ni, and I. Takagi Large amplitude stationary solutions to a chemotaxis system J. Differential Equations 72 1988 1 27
    • (1988) J. Differential Equations , vol.72 , pp. 1-27
    • Lin, C.-S.1    Ni, W.-M.2    Takagi, I.3
  • 25
    • 84990581933 scopus 로고
    • On the shape of least-energy solutions to a semilinear Neumann problem
    • W.-M. Ni, and I. Takagi On the shape of least-energy solutions to a semilinear Neumann problem Comm. Pure Appl. Math. 44 1991 819 851
    • (1991) Comm. Pure Appl. Math. , vol.44 , pp. 819-851
    • Ni, W.-M.1    Takagi, I.2
  • 26
    • 84971179248 scopus 로고
    • Locating the peaks of least-energy solutions to a semilinear Neumann problem
    • W.-M. Ni, and I. Takagi Locating the peaks of least-energy solutions to a semilinear Neumann problem Duke Math. J 70 1993 247 281
    • (1993) Duke Math. J , vol.70 , pp. 247-281
    • Ni, W.-M.1    Takagi, I.2
  • 27
    • 84973998562 scopus 로고
    • Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents
    • W.-M. Ni, X. B Pan, and I. Takagi Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents Duke Math. J. 67 1 1992 1 20
    • (1992) Duke Math. J. , vol.67 , Issue.1 , pp. 1-20
    • Ni, W.-M.1    Pan, X.B.2    Takagi, I.3
  • 28
    • 0002944738 scopus 로고
    • The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent
    • O. Rey The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent J. Funct. Anal. 89 1 1990 1 52
    • (1990) J. Funct. Anal. , vol.89 , Issue.1 , pp. 1-52
    • Rey, O.1
  • 29
    • 0001006373 scopus 로고    scopus 로고
    • Boundary effect for an elliptic Neumann problem with critical nonlinearity
    • O. Rey Boundary effect for an elliptic Neumann problem with critical nonlinearity Comm. in PDE 22 1997 1055 1139
    • (1997) Comm. in PDE , vol.22 , pp. 1055-1139
    • Rey, O.1
  • 30
    • 0037573655 scopus 로고    scopus 로고
    • An elliptic Neumann problem with critical nonlinearity in three dimensional domains
    • O. Rey An elliptic Neumann problem with critical nonlinearity in three dimensional domains Comm. Contemp. Math. 1 1999 405 449
    • (1999) Comm. Contemp. Math. , vol.1 , pp. 405-449
    • Rey, O.1
  • 31
    • 84995311604 scopus 로고    scopus 로고
    • Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity, part I: N = 3
    • submitted for publication
    • O. Rey, J. Wei, Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity, part I: N = 3, J. Funct. Anal., submitted for publication
    • J. Funct. Anal.
    • Rey, O.1    Wei, J.2
  • 32
    • 0001173375 scopus 로고
    • Neumann problem of semilinear elliptic equations involving critical Sobolev exponent
    • X.J. Wang Neumann problem of semilinear elliptic equations involving critical Sobolev exponent J. Differential Equations 93 1991 283 301
    • (1991) J. Differential Equations , vol.93 , pp. 283-301
    • Wang, X.J.1
  • 33
    • 84972510204 scopus 로고
    • The effect of domain geometry on the number of positive solutions of Neumann problems with critical exponents
    • Z.Q. Wang The effect of domain geometry on the number of positive solutions of Neumann problems with critical exponents Differential Integral Equations 8 1995 1533 1554
    • (1995) Differential Integral Equations , vol.8 , pp. 1533-1554
    • Wang, Z.Q.1
  • 34
    • 0031562011 scopus 로고    scopus 로고
    • On the boundary spike layer solutions to a singularly perturbed Neumann problem
    • J. Wei On the boundary spike layer solutions to a singularly perturbed Neumann problem J. Differential Equations 134 1 1997 104 133
    • (1997) J. Differential Equations , vol.134 , Issue.1 , pp. 104-133
    • Wei, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.