-
1
-
-
0002199454
-
The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honour of G. Prodi
-
Adimurthi, and G. Mancini The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honour of G. Prodi Scuola Norm. Sup. Pisa 1991 9 25
-
(1991)
Scuola Norm. Sup. Pisa
, pp. 9-25
-
-
Adimurthi1
Mancini, G.2
-
2
-
-
0002356162
-
Geometry and topology of the boundary in the critical Neumann problem
-
Adimurthi, and G. Mancini Geometry and topology of the boundary in the critical Neumann problem J. Reine Angew. Math. 456 1994 1 18
-
(1994)
J. Reine Angew. Math.
, vol.456
, pp. 1-18
-
-
Adimurthi1
Mancini, G.2
-
3
-
-
0000437039
-
The role of the mean curvature in semilinear Neumann problem involving critical exponent
-
Adimurthi, G. Mancini, and S.L. Yadava The role of the mean curvature in semilinear Neumann problem involving critical exponent Comm. Partial Differential Equations 20 3-4 1995 591 631
-
(1995)
Comm. Partial Differential Equations
, vol.20
, Issue.34
, pp. 591-631
-
-
Adimurthi1
Mancini, G.2
Yadava, S.L.3
-
4
-
-
43949176286
-
Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity
-
Adimurthi, F. Pacella, and S.L. Yadava Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity J. Funct. Anal. 113 1993 318 350
-
(1993)
J. Funct. Anal.
, vol.113
, pp. 318-350
-
-
Adimurthi1
Pacella, F.2
Yadava, S.L.3
-
5
-
-
84972493844
-
Characterization of concentration points and L∞-estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent
-
Adimurthi, F. Pacella, and S.L. Yadava Characterization of concentration points and L ∞ -estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent Differential Integral Equations 8 1 1995 41 68
-
(1995)
Differential Integral Equations
, vol.8
, Issue.1
, pp. 41-68
-
-
Adimurthi1
Pacella, F.2
Yadava, S.L.3
-
6
-
-
0041792894
-
The effect of geometry of the domain boundary in an elliptic Neumann problem
-
D. Cao, and E.S. Noussair The effect of geometry of the domain boundary in an elliptic Neumann problem Adv. Differential Equations 6 8 2001 931 958
-
(2001)
Adv. Differential Equations
, vol.6
, Issue.8
, pp. 931-958
-
-
Cao, D.1
Noussair, E.S.2
-
7
-
-
0000650326
-
Multipeak solutions for a singularly perturbed Neumann problem
-
E.N. Dancer, and S. Yan Multipeak solutions for a singularly perturbed Neumann problem Pacific J. Math. 189 2 1999 241 262
-
(1999)
Pacific J. Math.
, vol.189
, Issue.2
, pp. 241-262
-
-
Dancer, E.N.1
Yan, S.2
-
8
-
-
0042854704
-
"Bubble-tower" radial solutions in the slightly supercritical Brezis-Nirenberg problem
-
M. del Pino, J. Dolbeault, and M. Musso "Bubble-tower" radial solutions in the slightly supercritical Brezis-Nirenberg problem J. Differential Equations 193 2 2003 280 306
-
(2003)
J. Differential Equations
, vol.193
, Issue.2
, pp. 280-306
-
-
Del Pino, M.1
Dolbeault, J.2
Musso, M.3
-
9
-
-
0001663580
-
Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting
-
M. del Pino, and P. Felmer Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting Indiana Univ. Math. J. 48 3 1999 883 898
-
(1999)
Indiana Univ. Math. J.
, vol.48
, Issue.3
, pp. 883-898
-
-
Del Pino, M.1
Felmer, P.2
-
10
-
-
0038306934
-
Two-bubble solutions in the super-critical Bahri-Coron's problem
-
M. del Pino, P. Felmer, and M. Musso Two-bubble solutions in the super-critical Bahri-Coron's problem Calc. Var. PDE 16 2 2003 113 145
-
(2003)
Calc. Var. PDE
, vol.16
, Issue.2
, pp. 113-145
-
-
Del Pino, M.1
Felmer, P.2
Musso, M.3
-
11
-
-
0033233496
-
On the role of mean curvature in some singularly perturbed Neumann problems
-
M. del Pino, P. Felmer, and J. Wei On the role of mean curvature in some singularly perturbed Neumann problems SIAM J. Math. Anal. 31 1 1999 63 79
-
(1999)
SIAM J. Math. Anal.
, vol.31
, Issue.1
, pp. 63-79
-
-
Del Pino, M.1
Felmer, P.2
Wei, J.3
-
12
-
-
0001508926
-
Further studies on Emden's and similar differential equations
-
R.H. Fowler Further studies on Emden's and similar differential equations Quart. J. Math. 2 1931 259 288
-
(1931)
Quart. J. Math.
, vol.2
, pp. 259-288
-
-
Fowler, R.H.1
-
13
-
-
84974002244
-
(N+2)/(N-2)
-
M. Grossi A class of solutions for the Neumann problem - Δ u + λ u = u (N + 2) / (N - 2) Duke Math. J. 79 2 1995 309 334
-
(1995)
Duke Math. J.
, vol.79
, Issue.2
, pp. 309-334
-
-
Grossi, M.1
-
14
-
-
0003226251
-
Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory
-
M. Grossi, A. Pistoia, and J. Wei Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory Calc. Var. Partial Differential Equations 11 2 2000 143 175
-
(2000)
Calc. Var. Partial Differential Equations
, vol.11
, Issue.2
, pp. 143-175
-
-
Grossi, M.1
Pistoia, A.2
Wei, J.3
-
15
-
-
0000860177
-
Multi-peak solutions for a semilinear Neumann problem
-
C. Gui Multi-peak solutions for a semilinear Neumann problem Duke Math. J. 84 1996 739 769
-
(1996)
Duke Math. J.
, vol.84
, pp. 739-769
-
-
Gui, C.1
-
16
-
-
0032194927
-
Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent
-
C. Gui, and N. Ghoussoub Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent Math. Z. 229 3 1998 443 474
-
(1998)
Math. Z.
, vol.229
, Issue.3
, pp. 443-474
-
-
Gui, C.1
Ghoussoub, N.2
-
17
-
-
0036258520
-
Estimates for boundary-bubbling solutions to an elliptic Neumann problem
-
C. Gui, and C.-S. Lin Estimates for boundary-bubbling solutions to an elliptic Neumann problem J. Reine Angew. Math. 546 2002 201 235
-
(2002)
J. Reine Angew. Math.
, vol.546
, pp. 201-235
-
-
Gui, C.1
Lin, C.-S.2
-
18
-
-
0002610597
-
Multiple interior peak solutions for some singularly perturbed Neumann problems
-
C. Gui, and J. Wei Multiple interior peak solutions for some singularly perturbed Neumann problems J. Differential Equations 158 1 1999 1 27
-
(1999)
J. Differential Equations
, vol.158
, Issue.1
, pp. 1-27
-
-
Gui, C.1
Wei, J.2
-
19
-
-
0002057398
-
Multiple spike layers in the shadow Gierer-Meinhardt system: Existence of equilibria and the quasi-invariant manifold
-
M. Kowalczyk Multiple spike layers in the shadow Gierer-Meinhardt system: existence of equilibria and the quasi-invariant manifold Duke Math. J. 98 1 1999 59 111
-
(1999)
Duke Math. J.
, vol.98
, Issue.1
, pp. 59-111
-
-
Kowalczyk, M.1
-
20
-
-
0000984635
-
On a singularly perturbed equation with Neumann boundary condition
-
Y.Y. Li On a singularly perturbed equation with Neumann boundary condition Comm. Partial Differential Equations 23 3-4 1998 487 545
-
(1998)
Comm. Partial Differential Equations
, vol.23
, Issue.34
, pp. 487-545
-
-
Li, Y.Y.1
-
21
-
-
0013080765
-
n and related problems, part I
-
Y.Y. Li Prescribing scalar curvature on S n and related problems, part I J. Differential Equations 120 1996 541 597
-
(1996)
J. Differential Equations
, vol.120
, pp. 541-597
-
-
Li, Y.Y.1
-
23
-
-
0035635114
-
Locating the peaks of solutions via the maximum principle, I. The Neumann problem
-
C.-S. Lin Locating the peaks of solutions via the maximum principle, I. The Neumann problem Comm. Pure Appl. Math. 54 2001 1065 1095
-
(2001)
Comm. Pure Appl. Math.
, vol.54
, pp. 1065-1095
-
-
Lin, C.-S.1
-
24
-
-
0002542873
-
Large amplitude stationary solutions to a chemotaxis system
-
C.-S. Lin, W.-M. Ni, and I. Takagi Large amplitude stationary solutions to a chemotaxis system J. Differential Equations 72 1988 1 27
-
(1988)
J. Differential Equations
, vol.72
, pp. 1-27
-
-
Lin, C.-S.1
Ni, W.-M.2
Takagi, I.3
-
25
-
-
84990581933
-
On the shape of least-energy solutions to a semilinear Neumann problem
-
W.-M. Ni, and I. Takagi On the shape of least-energy solutions to a semilinear Neumann problem Comm. Pure Appl. Math. 44 1991 819 851
-
(1991)
Comm. Pure Appl. Math.
, vol.44
, pp. 819-851
-
-
Ni, W.-M.1
Takagi, I.2
-
26
-
-
84971179248
-
Locating the peaks of least-energy solutions to a semilinear Neumann problem
-
W.-M. Ni, and I. Takagi Locating the peaks of least-energy solutions to a semilinear Neumann problem Duke Math. J 70 1993 247 281
-
(1993)
Duke Math. J
, vol.70
, pp. 247-281
-
-
Ni, W.-M.1
Takagi, I.2
-
27
-
-
84973998562
-
Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents
-
W.-M. Ni, X. B Pan, and I. Takagi Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents Duke Math. J. 67 1 1992 1 20
-
(1992)
Duke Math. J.
, vol.67
, Issue.1
, pp. 1-20
-
-
Ni, W.-M.1
Pan, X.B.2
Takagi, I.3
-
28
-
-
0002944738
-
The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent
-
O. Rey The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent J. Funct. Anal. 89 1 1990 1 52
-
(1990)
J. Funct. Anal.
, vol.89
, Issue.1
, pp. 1-52
-
-
Rey, O.1
-
29
-
-
0001006373
-
Boundary effect for an elliptic Neumann problem with critical nonlinearity
-
O. Rey Boundary effect for an elliptic Neumann problem with critical nonlinearity Comm. in PDE 22 1997 1055 1139
-
(1997)
Comm. in PDE
, vol.22
, pp. 1055-1139
-
-
Rey, O.1
-
30
-
-
0037573655
-
An elliptic Neumann problem with critical nonlinearity in three dimensional domains
-
O. Rey An elliptic Neumann problem with critical nonlinearity in three dimensional domains Comm. Contemp. Math. 1 1999 405 449
-
(1999)
Comm. Contemp. Math.
, vol.1
, pp. 405-449
-
-
Rey, O.1
-
31
-
-
84995311604
-
Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity, part I: N = 3
-
submitted for publication
-
O. Rey, J. Wei, Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity, part I: N = 3, J. Funct. Anal., submitted for publication
-
J. Funct. Anal.
-
-
Rey, O.1
Wei, J.2
-
32
-
-
0001173375
-
Neumann problem of semilinear elliptic equations involving critical Sobolev exponent
-
X.J. Wang Neumann problem of semilinear elliptic equations involving critical Sobolev exponent J. Differential Equations 93 1991 283 301
-
(1991)
J. Differential Equations
, vol.93
, pp. 283-301
-
-
Wang, X.J.1
-
33
-
-
84972510204
-
The effect of domain geometry on the number of positive solutions of Neumann problems with critical exponents
-
Z.Q. Wang The effect of domain geometry on the number of positive solutions of Neumann problems with critical exponents Differential Integral Equations 8 1995 1533 1554
-
(1995)
Differential Integral Equations
, vol.8
, pp. 1533-1554
-
-
Wang, Z.Q.1
-
34
-
-
0031562011
-
On the boundary spike layer solutions to a singularly perturbed Neumann problem
-
J. Wei On the boundary spike layer solutions to a singularly perturbed Neumann problem J. Differential Equations 134 1 1997 104 133
-
(1997)
J. Differential Equations
, vol.134
, Issue.1
, pp. 104-133
-
-
Wei, J.1
|