메뉴 건너뛰기




Volumn 3, Issue 3-4, 2008, Pages 211-220

A nodal spline collocation method for the solution of cauchy singular integral equations

Author keywords

Nodal splines; Singular integral equations

Indexed keywords


EID: 72949106807     PISSN: 17908140     EISSN: 17908159     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (4)

References (27)
  • 1
    • 0035371499 scopus 로고    scopus 로고
    • An algorithm based on Q.I. Modified splines for singular integral models
    • F. Calió and E. Marchetti, An algorithm based on Q.I. modified splines for singular integral models, Computer Math. Appl. 41 1579-1588 (2001).
    • (2001) Computer Math. Appl , vol.41 , pp. 1579-1588
    • Calió, F.1    Marchetti, E.2
  • 2
    • 34250104078 scopus 로고
    • On the uniform convergence of a collocation method for a class of singular integral equations
    • J.A. Cuminato, On the uniform convergence of a collocation method for a class of singular integral equations, BIT 27 190-202 (1987).
    • (1987) BIT , vol.27 , pp. 190-202
    • Cuminato, J.A.1
  • 3
    • 18544365605 scopus 로고    scopus 로고
    • Nodal spline integration rules of Cauchy principal value integrals, Intern
    • C. Dagnino and V. Demichelis, Nodal spline integration rules of Cauchy principal value integrals, Intern. J. Computer Math. 79 233-246 (2002).
    • (2002) J. Computer Math , vol.79 , pp. 233-246
    • Dagnino, C.1    Demichelis, V.2
  • 4
    • 18544379685 scopus 로고    scopus 로고
    • Computational aspects of numerical integration based on optimal nodal spline
    • C. Dagnino and V. Demichelis, Computational aspects of numerical integration based on optimal nodal spline, Intern. J. Computer Math. 80, 243-255 (2003).
    • (2003) Intern. J. Computer Math , vol.80 , pp. 243-255
    • Dagnino, C.1    Demichelis, V.2
  • 5
    • 18544367571 scopus 로고    scopus 로고
    • A nodal spline collocation method for weakly singular Volterra integral equations
    • C. Dagnino, V. Demichelis and E. Santi, A nodal spline collocation method for weakly singular Volterra integral equations, Studia Univ. Babes-Bolyai Math. 48(3) 71-82 (2003).
    • (2003) Studia Univ. Babes-Bolyai Math , vol.48 , Issue.3 , pp. 71-82
    • Dagnino, C.1    Demichelis, V.2    Santi, E.3
  • 6
    • 0032022833 scopus 로고    scopus 로고
    • Convergence of rules based on nodal splines for the numerical evaluation of certain Cauchy principal value integrals
    • C. Dagnino, S. Perotto and E. Santi, Convergence of rules based on nodal splines for the numerical evaluation of certain Cauchy principal value integrals, J. Comp. Appl. Math. 89 225-235 (1998).
    • (1998) J. Comp. Appl. Math , vol.89 , pp. 225-235
    • Dagnino, C.1    Perotto, S.2    Santi, E.3
  • 7
    • 18544367089 scopus 로고    scopus 로고
    • Numerical evaluation of Cauchy principal integrals by means of nodal spline approximation
    • C. Dagnino and E. Santi, Numerical evaluation of Cauchy principal integrals by means of nodal spline approximation, Revue d'Anal. Num. Theor. Approx. 27 59-69 (1998).
    • (1998) Revue D'anal. Num. Theor. Approx , vol.27 , pp. 59-69
    • Dagnino, C.1    Santi, E.2
  • 9
    • 0038896008 scopus 로고
    • Compactly supported fundamental functions for spline interpolation
    • W. Dahmen, T.N.T. Goodman and C.A. Micchelli, Compactly supported fundamental functions for spline interpolation, Numer. Math. 52 641-664 (1988).
    • (1988) Numer. Math , vol.52 , pp. 641-664
    • Dahmen, W.1    Goodman, T.N.T.2    Micchelli, C.A.3
  • 10
    • 0004922103 scopus 로고
    • The use of modified quasi-interpolatory splines for the solution of the Prandtl equation
    • V. Demichelis, The use of modified quasi-interpolatory splines for the solution of the Prandtl equation, J. Comp. Appl. Math. 53, 329-338 (1995).
    • (1995) J. Comp. Appl. Math , vol.53 , pp. 329-338
    • Demichelis, V.1
  • 11
    • 0040655325 scopus 로고    scopus 로고
    • Convergence of derivatives of optimal nodal splines
    • V. Demichelis, Convergence of derivatives of optimal nodal splines, J. Approx. Th. 88 370-383 (1997).
    • (1997) J. Approx. Th , vol.88 , pp. 370-383
    • Demichelis, V.1
  • 12
    • 84863531402 scopus 로고    scopus 로고
    • Uniform error bounds for Cauchy principal value integrals
    • V. Demichelis, Uniform error bounds for Cauchy principal value integrals, Rend. Sem. Mat. Univ. Pol. Torino 62(2) 155-164 (2004).
    • (2004) Rend. Sem. Mat. Univ. Pol. Torino , vol.62 , Issue.2 , pp. 155-164
    • Demichelis, V.1
  • 13
    • 4444269454 scopus 로고    scopus 로고
    • Finite part integrals and modified splines
    • V. Demichelis and P. Rabinowitz, Finite part integrals and modified splines, BIT 44 259-267 (2004).
    • (2004) BIT , vol.44 , pp. 259-267
    • Demichelis, V.1    Rabinowitz, P.2
  • 14
    • 0039803008 scopus 로고    scopus 로고
    • Peano kernel error analysis for quadratic nodal spline interpolation
    • S.A. de Swardt and J.M. de Villiers, Peano kernel error analysis for quadratic nodal spline interpolation, J. Approx. Theory 99 344-368 (1999).
    • (1999) J. Approx. Theory , vol.99 , pp. 344-368
    • De Swardt, S.A.1    De Villiers, J.M.2
  • 15
    • 38248998753 scopus 로고
    • A convergence result in nodal spline interpolation
    • J.M. de Villiers, A convergence result in nodal spline interpolation, J. Approx. Theory 74 266-279 (1993).
    • (1993) J. Approx. Theory , vol.74 , pp. 266-279
    • De Villiers, J.M.1
  • 17
    • 0039488793 scopus 로고
    • A nodal spline generalization of the Lagrange interpolant
    • P. Nevai and A. Pinkus (Eds), Academic Press, Boston
    • J.M. de Villiers and C.H. Rohwer, A nodal spline generalization of the Lagrange interpolant, in: Progress in Approximation Theory, P. Nevai and A. Pinkus (Eds), Academic Press, Boston 201-211 (1991).
    • (1991) Progress in Approximation Theory , pp. 201-211
    • De Villiers, J.M.1    Rohwer, C.H.2
  • 18
    • 0039439521 scopus 로고
    • Sharp bounds for the Lebesgue constant in quadratic nodal spline interpolation
    • J.M. de Villiers C.H. and C.H. Rohwer, Sharp bounds for the Lebesgue constant in quadratic nodal spline interpolation, International Series of Num. Math. 115 1-13 (1994).
    • (1994) International Series of Num. Math , vol.115 , pp. 1-13
    • De Villiers, J.M.1    Rohwer, C.H.2
  • 19
    • 0032026182 scopus 로고    scopus 로고
    • Error bounds for spline-based quadrature methods for strongly singular integrals
    • K. Diethelm, Error bounds for spline-based quadrature methods for strongly singular integrals, J. Comput. Appl. Math. 89 257-261 (1998).
    • (1998) J. Comput. Appl. Math , vol.89 , pp. 257-261
    • Diethelm, K.1
  • 20
    • 18544383370 scopus 로고    scopus 로고
    • Erratum to "Error bounds for spline-based quadrature methods for strongly singular integrals"
    • K. Diethelm, Erratum to "Error bounds for spline-based quadrature methods for strongly singular integrals", J. Comp. Appl. Math. 142 449-450 (2002).
    • (2002) J. Comp. Appl. Math , vol.142 , pp. 449-450
    • Diethelm, K.1
  • 21
    • 0012691810 scopus 로고
    • Piecewise-polynomial quadratures for Cauchy singular integrals
    • A. Gerasoulis, Piecewise-polynomial quadratures for Cauchy singular integrals, SIAM J. Numer. Anal. 23 891-902 (1986).
    • (1986) SIAM J. Numer. Anal , vol.23 , pp. 891-902
    • Gerasoulis, A.1
  • 22
    • 84947064549 scopus 로고    scopus 로고
    • On the numerical solution of Cauchy singular integral equations II - A projector splines method for solution
    • P. Ciarlini, M.G. Cox, F. Pavese and D. Richter (Eds.), World Scientfic Publishing Company
    • L. Gori and E. Santi, On the numerical solution of Cauchy singular integral equations II - A projector splines method for solution, in: Advanced Mathematical Tools in Metrology II. P. Ciarlini, M.G. Cox, F. Pavese and D. Richter (Eds.), World Scientfic Publishing Company. 70-80 (1996).
    • (1996) Advanced Mathematical Tools in Metrology II , pp. 70-80
    • Gori, L.1    Santi, E.2
  • 24
    • 84966215674 scopus 로고
    • Uniform convergence results for Cauchy principal value integrals
    • P. Rabinowitz, Uniform convergence results for Cauchy principal value integrals, Math. Comp. 56 731-740 (1991).
    • (1991) Math. Comp , vol.56 , pp. 731-740
    • Rabinowitz, P.1
  • 25
    • 0038896009 scopus 로고
    • Product integration of singular integrals using optimal nodal splines
    • P. Rabinowitz, Product integration of singular integrals using optimal nodal splines, Rend. Sem. Mat. Univ. Pol. Torino 51 1-9 (1993).
    • (1993) Rend. Sem. Mat. Univ. Pol. Torino , vol.51 , pp. 1-9
    • Rabinowitz, P.1
  • 26
    • 0004951386 scopus 로고
    • Application of approximating splines for the solution of Cauchy singular integral equations
    • P. Rabinowitz, Application of approximating splines for the solution of Cauchy singular integral equations, Appl. Num. Math. 15 285-297 (1994).
    • (1994) Appl. Num. Math , vol.15 , pp. 285-297
    • Rabinowitz, P.1
  • 27
    • 0008761086 scopus 로고
    • On the uniform convergence of Cauchy principal values of quasiinterpolating splines
    • P. Rabinowitz and E. Santi, On the uniform convergence of Cauchy principal values of quasiinterpolating splines, BIT 35 277-290 (1995).
    • (1995) BIT , vol.35 , pp. 277-290
    • Rabinowitz, P.1    Santi, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.