-
1
-
-
0030360101
-
Applications of optimally local interpolation to interpolatory approximants and compactly supported wavelets
-
Chui C. K., de Villiers J. M. Applications of optimally local interpolation to interpolatory approximants and compactly supported wavelets. Math. Comp. 65:1996;99-114.
-
(1996)
Math. Comp.
, vol.65
, pp. 99-114
-
-
Chui, C.K.1
De Villiers, J.M.2
-
2
-
-
0032022833
-
Convergence of rules based on nodal splines for the numerical evaluation of certain 2D Cauchy principal value integrals
-
Dagnino C., Perotto S., Santi E. Convergence of rules based on nodal splines for the numerical evaluation of certain 2D Cauchy principal value integrals. J. Comp. Appl. Math. 89:1998;225-235.
-
(1998)
J. Comp. Appl. Math.
, vol.89
, pp. 225-235
-
-
Dagnino, C.1
Perotto, S.2
Santi, E.3
-
3
-
-
0038896008
-
Compactly supported functions for spine interpolation
-
Dahmen W., Goodman T. N. T., Micchelli C. A. Compactly supported functions for spine interpolation. Numer. Math. 52:1988;639-664.
-
(1988)
Numer. Math.
, vol.52
, pp. 639-664
-
-
Dahmen, W.1
Goodman, T.N.T.2
Micchelli, C.A.3
-
4
-
-
0040655325
-
Convergence of derivatives of optimal nodal splines
-
Demichelis V. Convergence of derivatives of optimal nodal splines. J. Approx. Theory. 88:1997;370-383.
-
(1997)
J. Approx. Theory
, vol.88
, pp. 370-383
-
-
Demichelis, V.1
-
6
-
-
0039488793
-
A nodal spline generalization of the Lagrange interpolant
-
P. Nevai, & A. Pinkus. San Diego: Academic Press
-
de Villiers J. M., Rohwer C. H. A nodal spline generalization of the Lagrange interpolant. Nevai P., Pinkus A. Progress in Approximation Theory. 1991;201-211 Academic Press, San Diego.
-
(1991)
Progress in Approximation Theory
, pp. 201-211
-
-
De Villiers, J.M.1
Rohwer, C.H.2
-
7
-
-
38248998753
-
A convergence result in nodal spline interpolation
-
de Villiers J. M. A convergence result in nodal spline interpolation. J. Approx. Theory. 74:1993;266-279.
-
(1993)
J. Approx. Theory
, vol.74
, pp. 266-279
-
-
De Villiers, J.M.1
-
8
-
-
21344487386
-
A nodal spline interpolant for the Gregory rule of even order
-
de Villiers J. M. A nodal spline interpolant for the Gregory rule of even order. Numer. Math. 66:1993;123-137.
-
(1993)
Numer. Math.
, vol.66
, pp. 123-137
-
-
De Villiers, J.M.1
-
9
-
-
0346235536
-
Sharp bounds for the Lebesgue constant in quadratic nodal spline interpolation
-
R. V. M. Zahar. Basel: Birkhäuser
-
de Villiers J. M., Rohwer C. H. Sharp bounds for the Lebesgue constant in quadratic nodal spline interpolation. Zahar R. V. M. Approximation and Computation. Internat. Ser. Numer. Math. 119:1994;157-167 Birkhäuser, Basel.
-
(1994)
Approximation and Computation. Internat. Ser. Numer. Math.
, vol.119
, pp. 157-167
-
-
De Villiers, J.M.1
Rohwer, C.H.2
-
10
-
-
0038896009
-
Product integration of singular integrals using optimal nodal splines
-
Rabinowitz P. Product integration of singular integrals using optimal nodal splines. Rend. Sem. Mat. Univ. Politec. Torino. 51:1993;1-9.
-
(1993)
Rend. Sem. Mat. Univ. Politec. Torino
, vol.51
, pp. 1-9
-
-
Rabinowitz, P.1
-
11
-
-
0004951386
-
Application of approximating splines for the solution of Cauchy singular integral equations
-
Rabinowitz P. Application of approximating splines for the solution of Cauchy singular integral equations. Appl. Numer. Math. 15:1994;285-297.
-
(1994)
Appl. Numer. Math.
, vol.15
, pp. 285-297
-
-
Rabinowitz, P.1
|