-
1
-
-
0037166824
-
-
10.1103/PhysRevLett.88.256803
-
J. Heurich, J. C. Cuevas, W. Wenzel, and G. Schön, Phys. Rev. Lett. 88, 256803 (2002). 10.1103/PhysRevLett.88.256803
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 256803
-
-
Heurich, J.1
Cuevas, J.C.2
Wenzel, W.3
Schön, G.4
-
2
-
-
0038442872
-
Electron transport in molecular wire junctions
-
DOI 10.1126/science.1081572
-
A. Nitzan and M. A. Ratner, Science 300, 1384 (2003). 10.1126/science.1081572 (Pubitemid 36638150)
-
(2003)
Science
, vol.300
, Issue.5624
, pp. 1384-1389
-
-
Nitzan, A.1
Ratner, M.A.2
-
3
-
-
0037371714
-
-
10.1016/S0927-0256(02)00439-1
-
K. Stokbro, J. Taylor, M. Brandbyge, J.-L. Mozos, and P. Ordejón, Comput. Mater. Sci. 27, 151 (2003). 10.1016/S0927-0256(02)00439-1
-
(2003)
Comput. Mater. Sci.
, vol.27
, pp. 151
-
-
Stokbro, K.1
Taylor, J.2
Brandbyge, M.3
Mozos, J.-L.4
Ordejón, P.5
-
5
-
-
34248325716
-
Interference in a quantum dot molecule embedded in a ring interferometer
-
DOI 10.1088/1367-2630/9/5/111, PII S1367263007370705
-
See, for example, New J. Phys 9, 111 (2007), especially the focus articles 111-125. 10.1088/1367-2630/9/5/111 (Pubitemid 46737645)
-
(2007)
New Journal of Physics
, vol.9
, pp. 111
-
-
Ihn, T.1
Sigrist, M.2
Ensslin, K.3
Wegscheider, W.4
Reinwald, M.5
-
6
-
-
84996237073
-
-
10.1080/14786437008238472
-
R. Landauer, Philos. Mag. 21, 863 (1970). 10.1080/14786437008238472
-
(1970)
Philos. Mag.
, vol.21
, pp. 863
-
-
Landauer, R.1
-
7
-
-
8744270531
-
-
10.1103/PhysRevB.31.6207
-
M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985). 10.1103/PhysRevB.31.6207
-
(1985)
Phys. Rev. B
, vol.31
, pp. 6207
-
-
Büttiker, M.1
Imry, Y.2
Landauer, R.3
Pinhas, S.4
-
8
-
-
0003422041
-
-
Springer Series in Solid-State Sciences, Berlin, Heidelberg, New York
-
H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer Series in Solid-State Sciences, Berlin, Heidelberg, New York, 1996), Vol. 123.
-
(1996)
Quantum Kinetics in Transport and Optics of Semiconductors
, vol.123
-
-
Haug, H.1
Jauho, A.-P.2
-
10
-
-
19444381068
-
-
10.1103/PhysRevLett.93.076401
-
S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401 (2004). 10.1103/PhysRevLett.93.076401
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 076401
-
-
White, S.R.1
Feiguin, A.E.2
-
11
-
-
10244221686
-
-
10.1088/1742-5468/2004/04/P04005
-
A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat. Mech.: Theory Exp. (2004) P04005. 10.1088/1742-5468/2004/04/P04005
-
J. Stat. Mech.: Theory Exp.
, vol.2004
, pp. 04005
-
-
Daley, A.J.1
Kollath, C.2
Schollwöck, U.3
Vidal, G.4
-
14
-
-
4243720937
-
-
10.1103/PhysRevB.63.245407
-
J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407 (2001). 10.1103/PhysRevB.63.245407
-
(2001)
Phys. Rev. B
, vol.63
, pp. 245407
-
-
Taylor, J.1
Guo, H.2
Wang, J.3
-
15
-
-
0037091644
-
-
10.1103/PhysRevB.65.165401
-
M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002). 10.1103/PhysRevB.65.165401
-
(2002)
Phys. Rev. B
, vol.65
, pp. 165401
-
-
Brandbyge, M.1
Mozos, J.-L.2
Ordejón, P.3
Taylor, J.4
Stokbro, K.5
-
16
-
-
33244475319
-
Spin and molecular electronics in atomically generated orbital landscapes
-
DOI 10.1103/PhysRevB.73.085414, 085414
-
A. R. Rocha, V. M. García-Suárez, S. Bailey, C. Lambert, J. Ferrer, and S. Sanvito, Phys. Rev. B 73, 085414 (2006). 10.1103/PhysRevB.73. 085414 (Pubitemid 43279557)
-
(2006)
Physical Review B - Condensed Matter and Materials Physics
, vol.73
, Issue.8
, pp. 1-22
-
-
Rocha, A.R.1
Garcia-Suarez, V.M.2
Bailey, S.3
Lambert, C.4
Ferrer, J.5
Sanvito, S.6
-
17
-
-
0037458429
-
-
10.1103/PhysRevLett.90.076805
-
M. H. Hettler, W. Wenzel, M. R. Wegewijs, and H. Schoeller, Phys. Rev. Lett. 90, 076805 (2003). 10.1103/PhysRevLett.90.076805
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 076805
-
-
Hettler, M.H.1
Wenzel, W.2
Wegewijs, M.R.3
Schoeller, H.4
-
19
-
-
33847742248
-
Nonequilibrium GW approach to quantum transport in nano-scale contacts
-
DOI 10.1063/1.2565690
-
K. S. Thygesen and A. Rubio, J. Chem. Phys. 126, 091101 (2007). 10.1063/1.2565690 (Pubitemid 46385611)
-
(2007)
Journal of Chemical Physics
, vol.126
, Issue.9
, pp. 091101
-
-
Thygesen, K.S.1
Rubio, A.2
-
20
-
-
1842413643
-
Conductance of a molecular junction
-
DOI 10.1126/science.278.5336.252
-
M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science 278, 252 (1997). 10.1126/science.278.5336.252 (Pubitemid 27450865)
-
(1997)
Science
, vol.278
, Issue.5336
, pp. 252-254
-
-
Reed, M.A.1
Zhou, C.2
Muller, C.J.3
Burgin, T.P.4
Tour, J.M.5
-
21
-
-
1442324527
-
Measurement of Single Molecule Conductance: Benzenedithiol and Benzenedimethanethiol
-
DOI 10.1021/nl035000m
-
X. Xiao, B. Xu, and N. Tao, Nano Lett. 4, 267 (2004). 10.1021/nl035000m (Pubitemid 38292899)
-
(2004)
Nano Letters
, vol.4
, Issue.2
, pp. 267-271
-
-
Xiao, X.1
Xu, B.2
Tao, N.J.3
-
22
-
-
23644444648
-
Measurement of the conductance of single conjugated molecules
-
DOI 10.1038/nature03898
-
T. Dadosh, Y. Gordin, R. Krahne, I. Khivrich, D. Mahalu, V. Frydman, J. Sperling, A. Yacoby, and I. Bar-Joseph, Nature (London) 436, 677 (2005). 10.1038/nature03898 (Pubitemid 41117266)
-
(2005)
Nature
, vol.436
, Issue.7051
, pp. 677-680
-
-
Dadosh, T.1
Gordin, Y.2
Krahne, R.3
Khivrich, I.4
Mahalu, D.5
Frydman, V.6
Sperling, J.7
Yacoby, A.8
Bar-Joseph, I.9
-
23
-
-
33750179325
-
High-conductance states of single benzenedithiol molecules
-
DOI 10.1063/1.2363995
-
M. Tsutsui, Y. Teramae, S. Kurokawa, and A. Sakai, Appl. Phys. Lett. 89, 163111 (2006). 10.1063/1.2363995 (Pubitemid 44601724)
-
(2006)
Applied Physics Letters
, vol.89
, Issue.16
, pp. 163111
-
-
Tsutsui, M.1
Teramae, Y.2
Kurokawa, S.3
Sakai, A.4
-
24
-
-
4344685335
-
-
10.1103/PhysRevLett.93.036805
-
P. Delaney and J. C. Greer, Phys. Rev. Lett. 93, 036805 (2004). 10.1103/PhysRevLett.93.036805
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 036805
-
-
Delaney, P.1
Greer, J.C.2
-
27
-
-
33745487317
-
Independent particle descriptions of tunneling using the many-body quantum transport approach
-
DOI 10.1103/PhysRevB.73.241314
-
G. Fagas, P. Delaney, and J. C. Greer, Phys. Rev. B 73, 241314 (R) (2006). 10.1103/PhysRevB.73.241314 (Pubitemid 43962718)
-
(2006)
Physical Review B - Condensed Matter and Materials Physics
, vol.73
, Issue.24
, pp. 241314
-
-
Fagas, G.1
Delaney, P.2
Greer, J.C.3
-
28
-
-
34748853680
-
Tunnelling in alkanes anchored to gold electrodes via amine end groups
-
DOI 10.1088/0957-4484/18/42/424010, PII S0957448407498609
-
G. Fagas and J. C. Greer, Nanotechnology 18, 424010 (2007). 10.1088/0957-4484/18/42/424010 (Pubitemid 47479603)
-
(2007)
Nanotechnology
, vol.18
, Issue.42
, pp. 424010
-
-
Fagas, G.1
Greer, J.C.2
-
29
-
-
52949133050
-
-
10.1103/PhysRevB.78.115315
-
I. Bĝldea and H. Köppel, Phys. Rev. B 78, 115315 (2008). 10.1103/PhysRevB.78.115315
-
(2008)
Phys. Rev. B
, vol.78
, pp. 115315
-
-
Bĝldea, I.1
Köppel, H.2
-
30
-
-
72849108557
-
-
Any operator Q can be decomposed in a Hermitian and an anti-Hermitian part, Q= (A+iB) /2 where A= A† and B= B† are Hermitian operators (A≡Q+ Q†, iB≡Q- Q†). Because the complex conjugate of Eq. 4 must also be satisfied, A and B must satisfy similar conditions, □Ψ| A |Ψ□ = □ Ψ0 | A | Ψ0 □ and □Ψ| B |Ψ□ = □ Ψ0 | B | Ψ0 □.
-
Any operator Q can be decomposed in a Hermitian and an anti-Hermitian part, Q= (A+iB) /2 where A= A† and B= B† are Hermitian operators (A≡Q+ Q†, iB≡Q- Q†). Because the complex conjugate of Eq. 4 must also be satisfied, A and B must satisfy similar conditions, □Ψ| A |Ψ□ = □ Ψ0 | A | Ψ0 □ and □Ψ| B |Ψ□ = □ Ψ0 | B | Ψ0 □.
-
-
-
-
31
-
-
0001415608
-
-
10.1088/0022-3719/4/8/018
-
C. Caroli, R. Combescot, P. Nozières, and D. Saint-James, J. Phys. C 4, 916 (1971). 10.1088/0022-3719/4/8/018
-
(1971)
J. Phys. C
, vol.4
, pp. 916
-
-
Caroli, C.1
Combescot, R.2
Nozières, P.3
Saint-James, D.4
-
32
-
-
72849123783
-
-
We checked by straightforward numerical calculations that these determinants do not vanish for the case of the point contact attached to long electrodes and for the single electron transistor connected to short electrodes.
-
We checked by straightforward numerical calculations that these determinants do not vanish for the case of the point contact attached to long electrodes and for the single electron transistor connected to short electrodes.
-
-
-
-
33
-
-
72849142131
-
-
In ab initio calculations like those of Refs., the equation of continuity 9 has to be imposed not only for a cluster of certain size (N), but also on a spatial grid containing a finite number of points { xl } l=1 Ng, and Ng should also be sufficiently large to ensure convergence.
-
In ab initio calculations like those of Refs., the equation of continuity 9 has to be imposed not only for a cluster of certain size (N), but also on a spatial grid containing a finite number of points { xl } l=1 Ng, and Ng should also be sufficiently large to ensure convergence.
-
-
-
-
34
-
-
72849107317
-
-
For example, N= (2N N) in a half-filled cluster, where the number of electrons is equal to the number of sites.
-
For example, N= (2N N) in a half-filled cluster, where the number of electrons is equal to the number of sites.
-
-
-
-
36
-
-
0035894356
-
-
10.1103/PhysRevB.64.241310
-
T. A. Costi, Phys. Rev. B 64, 241310 (R) (2001). 10.1103/PhysRevB.64. 241310
-
(2001)
Phys. Rev. B
, vol.64
, pp. 241310
-
-
Costi, T.A.1
-
37
-
-
72849130902
-
-
In fact, it is easy to understand that this result is not limited to the linear response approximation: it is just the exact ground state |G□ of H+W, which minimizes E of Eq. 1. Being an eigenstate, there is no need to impose the equation of continuity. The latter is automatically satisfied in the state |G□, J= Jq, but this ground state cannot sustain a finite current, i.e., J=0. One should remark in this context that the assumption that all the model parameters of the Hamiltonian are real (which allows to consider that all the eigenstates are real) excludes superconductivity: the average of the current operator jq of Eq. 8 vanishes for any real state.
-
In fact, it is easy to understand that this result is not limited to the linear response approximation: it is just the exact ground state |G□ of H+W, which minimizes E of Eq. 1. Being an eigenstate, there is no need to impose the equation of continuity. The latter is automatically satisfied in the state |G□, J= Jq, but this ground state cannot sustain a finite current, i.e., J=0. One should remark in this context that the assumption that all the model parameters of the Hamiltonian are real (which allows to consider that all the eigenstates are real) excludes superconductivity: the average of the current operator jq of Eq. 8 vanishes for any real state.
-
-
-
-
38
-
-
0037633241
-
Many-body scattering formalism of quantum molecular conductance
-
DOI 10.1016/S0009-2614(03)00709-7, PII S0009261403007097
-
R. Baer and D. Neuhauser, Chem. Phys. Lett. 374, 459 (2003). 10.1016/S0009-2614(03)00709-7 (Pubitemid 36742423)
-
(2003)
Chemical Physics Letters
, vol.374
, Issue.5-6
, pp. 459-463
-
-
Baer, R.1
Neuhauser, D.2
-
39
-
-
35949009471
-
-
10.1103/RevModPhys.63.215
-
W. R. Frensley, Rev. Mod. Phys. 63, 215 (1991). 10.1103/RevModPhys.63.215
-
(1991)
Rev. Mod. Phys.
, vol.63
, pp. 215
-
-
Frensley, W.R.1
|