메뉴 건너뛰기




Volumn 1, Issue , 2009, Pages 220-231

Agglomerative mean-shift clustering via query set compression

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING METHODS; COMPRESSION MECHANISM; COMPUTATIONAL COSTS; CONVERGENCE PROPERTIES; DATA SETS; MEAN SHIFT; NON-PARAMETRIC; NUMERICAL ACCURACY; PAIRWISE CONSTRAINTS; REAL WORLD DATA; RUNNING TIME; SEMI-SUPERVISED;

EID: 72849133265     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (6)

References (22)
  • 2
    • 14344264451 scopus 로고    scopus 로고
    • Integrating constraints and metric learning in semi-supervised clustering
    • M. Bilenko, S. Basu, and R. Mooney. Integrating constraints and metric learning in semi-supervised clustering. In International Conference on Machine Learning, volume 1, pages 81-88, 2004.
    • (2004) International Conference on Machine Learning , vol.1 , pp. 81-88
    • Bilenko, M.1    Basu, S.2    Mooney, R.3
  • 4
    • 33845577819 scopus 로고    scopus 로고
    • Acceleration strategies for gaussian mean-shift image segmentation
    • IEEE
    • M. Carreira-Perpinan. Acceleration strategies for gaussian mean-shift image segmentation. In Computer Vision and Pattern Recognition, volume 1, pages 1160-1167. IEEE, 2006.
    • (2006) Computer Vision and Pattern Recognition , vol.1 , pp. 1160-1167
    • Carreira-Perpinan, M.1
  • 6
    • 34047257042 scopus 로고    scopus 로고
    • Gaussian mean-shift is an em algorithm
    • M. Carreira-Perpinan. Gaussian mean-shift is an em algorithm. IEEE TPAMI, 29(5):767-776, 2007.
    • (2007) IEEE TPAMI , vol.29 , Issue.5 , pp. 767-776
    • Carreira-Perpinan, M.1
  • 7
    • 0029357425 scopus 로고
    • Mean shift, mode seeking, and clustering
    • Y. Cheng. Mean shift, mode seeking, and clustering. IEEE TPAMI, 17(7):790-799, 1995.
    • (1995) IEEE TPAMI , vol.17 , Issue.7 , pp. 790-799
    • Cheng, Y.1
  • 8
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: A robust approach toward feature space analysis
    • 603-è19, May
    • D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. IEEE TPAMI, 24(5):603-è19, May 2002.
    • (2002) IEEE TPAMI , vol.24 , Issue.5
    • Comaniciu, D.1    Meer, P.2
  • 9
    • 84880095768 scopus 로고    scopus 로고
    • Clustering with constraints: Feasibility issues and the k-means algorithm
    • SIAM
    • I. Davidson and S. Ravi. Clustering with constraints: Feasibility issues and the k-means algorithm. In International Conference on Data Mining. SIAM, 2005.
    • (2005) International Conference on Data Mining
    • Davidson, I.1    Ravi, S.2
  • 11
    • 15044364880 scopus 로고    scopus 로고
    • Mean shift is a bound optimization
    • Mar
    • M. Fashing and C. Tomasi. Mean shift is a bound optimization. IEEE TPAMI, 27:471-474, Mar. 2005.
    • (2005) IEEE TPAMI , vol.27 , pp. 471-474
    • Fashing, M.1    Tomasi, C.2
  • 12
    • 0016421071 scopus 로고
    • The estimation of the gradient of a density function, with application in pattern recognition
    • K. Fukunaga and L. Hostetler. The estimation of the gradient of a density function, with application in pattern recognition. IEEE Transactions on Information Theory, 21:32-40, 1975.
    • (1975) IEEE Transactions on Information Theory , vol.21 , pp. 32-40
    • Fukunaga, K.1    Hostetler, L.2
  • 14
    • 0345414073 scopus 로고    scopus 로고
    • Mean shift based clustering in high dimensions: A texture classification example
    • IEEE
    • B. Georgescu, I. Shimshoni, and P. Meer. Mean shift based clustering in high dimensions: a texture classification example. In International Conference on Computer Vision, volume 1, pages 456-463. IEEE, 2003.
    • (2003) International Conference on Computer Vision , vol.1 , pp. 456-463
    • Georgescu, B.1    Shimshoni, I.2    Meer, P.3
  • 15
    • 58049095501 scopus 로고    scopus 로고
    • Face recognition using laplacianfaces
    • Mar
    • X. He, S. Yan, Y. Hu, P. Niyogi, and H. Zhang. Face recognition using laplacianfaces. IEEE TPAMI, 27(3):1-13, Mar. 2005.
    • (2005) IEEE TPAMI , vol.27 , Issue.3 , pp. 1-13
    • He, X.1    Yan, S.2    Hu, Y.3    Niyogi, P.4    Zhang, H.5
  • 16
    • 9444294778 scopus 로고    scopus 로고
    • From instance-level constrains to space-level constraints: Making the most of prior knowledge in data clustering
    • D. Klein, S. Kamvar, and C. Manning. From instance-level constrains to space-level constraints: Making the most of prior knowledge in data clustering. In International Conference on Machine Learning, pages 307-314, 2002.
    • (2002) International Conference on Machine Learning , pp. 307-314
    • Klein, D.1    Kamvar, S.2    Manning, C.3
  • 22
    • 50649092224 scopus 로고    scopus 로고
    • Half quadratic analysis for mean shift: With extension to a sequential data mode-seeking method
    • IEEE
    • X. T. Yuan and S. Z. Li. Half quadratic analysis for mean shift: with extension to a sequential data mode-seeking method. In International Conference on Computer Vision. IEEE, 2007.
    • (2007) International Conference on Computer Vision
    • Yuan, X.T.1    Li, S.Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.