메뉴 건너뛰기




Volumn , Issue , 2009, Pages 461-468

Approximating the search distribution to the selection distribution in EDAs

Author keywords

Estimation distribution algorithms; Selection methods

Indexed keywords

BEST APPROXIMATIONS; DISTRIBUTION ALGORITHMS; DISTRIBUTION EQUATIONS; ESTIMATION OF DISTRIBUTION ALGORITHMS; FINITE POPULATION; NEW APPROACHES; REAL VARIABLES; SELECTION METHODS; SELECTION OPERATORS; SOURCE DATA; THEORETICAL RESULT;

EID: 72749109122     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1569901.1569965     Document Type: Conference Paper
Times cited : (16)

References (21)
  • 1
    • 0003984832 scopus 로고
    • Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning
    • Technical report, Carnegie Mellon University, Pittsburgh, PA, USA
    • S. Baluja. Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning. Technical report, Carnegie Mellon University, Pittsburgh, PA, USA, 1994.
    • (1994)
    • Baluja, S.1
  • 4
    • 34249832377 scopus 로고
    • A Bayesian Method for the Induction of Probabilistics Networks from Data
    • G. Cooper and E. Herskovits. A Bayesian Method for the Induction of Probabilistics Networks from Data. Machine Learning, 9:309-347, 1992.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 8
    • 0004069443 scopus 로고    scopus 로고
    • Optimization by Learning and Simulation of Bayesian and Gaussian Networks
    • Technical Report EHU-KZAA-IK-4/99, Department of Computer Science and Artificial Intelligence, University of the Basque Country
    • P. Larrañaga, R. Etxeberria, J. Lozano, and J. Peña. Optimization by Learning and Simulation of Bayesian and Gaussian Networks. Technical Report EHU-KZAA-IK-4/99, Department of Computer Science and Artificial Intelligence, University of the Basque Country, 1999.
    • (1999)
    • Larrañaga, P.1    Etxeberria, R.2    Lozano, J.3    Peña, J.4
  • 10
    • 33751383531 scopus 로고    scopus 로고
    • Towards a New Evolutionary Computation
    • J. A. Lozano, P. Larrañaga, I. Inza, and E. Bengoetxea, editors, of, Springer
    • J. A. Lozano, P. Larrañaga, I. Inza, and E. Bengoetxea, editors. Towards a New Evolutionary Computation, volume 192 of Studies in Fuzziness and Soft Computing. Springer, 2006.
    • (2006) Studies in Fuzziness and Soft Computing , vol.192
  • 11
    • 72749102881 scopus 로고    scopus 로고
    • 2. From Recombination of Genes to the Estimation of Distributions II. Continuous Parameters, 1996.
    • 2. From Recombination of Genes to the Estimation of Distributions II. Continuous Parameters, 1996.
  • 12
    • 0031215849 scopus 로고    scopus 로고
    • The Equation for Response to Selection and Its Use for Prediction
    • H. Mühlenbein. The Equation for Response to Selection and Its Use for Prediction. Evolutionary Computation, 5(3):303-346, 1997.
    • (1997) Evolutionary Computation , vol.5 , Issue.3 , pp. 303-346
    • Mühlenbein, H.1
  • 16
    • 34147154444 scopus 로고    scopus 로고
    • Scalable Optimization via Probabilistic Modeling
    • M. Pelikan, K. Sastry, and E. Cantú-Paz, editors, of, Springer
    • M. Pelikan, K. Sastry, and E. Cantú-Paz, editors. Scalable Optimization via Probabilistic Modeling, volume 33 of Studies in Computational Intelligence. Springer, 2006.
    • (2006) Studies in Computational Intelligence , vol.33
  • 17
    • 57349156955 scopus 로고    scopus 로고
    • M. Pelikan, K. Sastry, and D. E. Goldberg. iBOA: The Incremental Bayesian Optimization Algorithm. In GECCO '08: Proceedings of the 2008 Conference on Genetic and Evolutionary Computation, pages 455-462. ACM, 2008.
    • M. Pelikan, K. Sastry, and D. E. Goldberg. iBOA: The Incremental Bayesian Optimization Algorithm. In GECCO '08: Proceedings of the 2008 Conference on Genetic and Evolutionary Computation, pages 455-462. ACM, 2008.
  • 19
    • 0141693974 scopus 로고    scopus 로고
    • Evolutionary Algorithm using Marginal Histogram Models in Continuous Domain
    • Technical Report 2001019, Illinois Genetic Algorithms Laboratory
    • S. Tsutsui, M. Pelikan, , and D. E. Goldberg. Evolutionary Algorithm using Marginal Histogram Models in Continuous Domain. Technical Report 2001019, Illinois Genetic Algorithms Laboratory, 2001.
    • (2001)
    • Tsutsui, S.1    Pelikan, M.2    Goldberg, D.E.3
  • 21
    • 2442661659 scopus 로고    scopus 로고
    • On the Convergence of a Class of Estimation of Distribution Algorithms
    • April
    • Q. Zhang and H. Mühlenbein. On the Convergence of a Class of Estimation of Distribution Algorithms. IEEE Transactions on Evolutionary Computation, 8(2):127-136, April 2004.
    • (2004) IEEE Transactions on Evolutionary Computation , vol.8 , Issue.2 , pp. 127-136
    • Zhang, Q.1    Mühlenbein, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.