메뉴 건너뛰기




Volumn , Issue , 2008, Pages 455-462

IBOA: The incremental Bayesian optimization algorithm

Author keywords

Algorithms

Indexed keywords

BAYESIAN OPTIMIZATION ALGORITHMS; ESTIMATION OF DISTRIBUTION ALGORITHMS; INCREMENTAL TECHNIQUES; INCREMENTAL UPDATES; NEARLY DECOMPOSABLE; PROBABILISTIC MODELS;

EID: 57349156955     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (23)

References (34)
  • 1
    • 0002589531 scopus 로고
    • An empirical study of bit vector function optimization
    • D. H. Ackley. An empirical study of bit vector function optimization. Genetic Algorithms and Simulated Annealing, pages 170-204, 1987.
    • (1987) Genetic Algorithms and Simulated Annealing , pp. 170-204
    • Ackley, D.H.1
  • 2
    • 0003984832 scopus 로고
    • Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning
    • Tech. Rep. No. CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA
    • S. Baluja. Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Tech. Rep. No. CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA, 1994.
    • (1994)
    • Baluja, S.1
  • 3
    • 0001955592 scopus 로고    scopus 로고
    • Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space
    • S. Baluja and S. Davies. Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space. Proceedings of the International Conference on Machine Learning, pages 30-38, 1997.
    • (1997) Proceedings of the International Conference on Machine Learning , pp. 30-38
    • Baluja, S.1    Davies, S.2
  • 5
    • 0011843617 scopus 로고    scopus 로고
    • A Bayesian approach to learning Bayesian networks with local structure
    • Technical Report MSR-TR-97-07, Microsoft Research, Redmond, WA
    • D. M. Chickering, D. Heckerman, and C. Meek. A Bayesian approach to learning Bayesian networks with local structure. Technical Report MSR-TR-97-07, Microsoft Research, Redmond, WA, 1997.
    • (1997)
    • Chickering, D.M.1    Heckerman, D.2    Meek, C.3
  • 6
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14:462-467, 1968.
    • (1968) IEEE Transactions on Information Theory , vol.14 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 7
    • 0041822908 scopus 로고
    • Analyzing deception in trap functions
    • No. 91009, Illinois Genetic Algorithms Laboratory, Urbana, IL
    • K. Deb and D. E. Goldberg. Analyzing deception in trap functions. IlliGAL Report No. 91009, Illinois Genetic Algorithms Laboratory, Urbana, IL, 1991.
    • (1991) IlliGAL Report
    • Deb, K.1    Goldberg, D.E.2
  • 8
    • 57349167138 scopus 로고    scopus 로고
    • R. Etxeberria and P. Larrañaga. Global optimization using Bayesian networks, In A. A. O. Rodriguez, M. R. S. Ortiz, and R. S. Hermida, editors, Second Symposium on Artificial Intelligence (CIMAF-99), pages 332-339, Habana, Cuba, 1999. Institude of Cybernetics, Mathematics, and Physics and Ministry of Science, Technology and Environment.
    • R. Etxeberria and P. Larrañaga. Global optimization using Bayesian networks, In A. A. O. Rodriguez, M. R. S. Ortiz, and R. S. Hermida, editors, Second Symposium on Artificial Intelligence (CIMAF-99), pages 332-339, Habana, Cuba, 1999. Institude of Cybernetics, Mathematics, and Physics and Ministry of Science, Technology and Environment.
  • 9
    • 0000220520 scopus 로고    scopus 로고
    • Learning Bayesian networks with local structure
    • M. I. Jordan, editor, MIT Press, Cambridge, MA
    • N. Friedman and M. Goldszmidt. Learning Bayesian networks with local structure. In M. I. Jordan, editor, Graphical models, pages 421-459. MIT Press, Cambridge, MA, 1999.
    • (1999) Graphical models , pp. 421-459
    • Friedman, N.1    Goldszmidt, M.2
  • 10
    • 22944491997 scopus 로고    scopus 로고
    • The design of innovation: Lessons from and for competent genetic algorithms
    • of, Kluwer Academic Publishers
    • D. E. Goldberg. The design of innovation: Lessons from and for competent genetic algorithms, volume 7 of Genetic Algorithms and Evolutionary Computation, Kluwer Academic Publishers, 2002.
    • (2002) Genetic Algorithms and Evolutionary Computation , vol.7
    • Goldberg, D.E.1
  • 11
    • 33847275624 scopus 로고    scopus 로고
    • Toward routine billion-variable optimization using genetic algorithms
    • D. E. Goldberg, K. Sastry, and X. Llorà. Toward routine billion-variable optimization using genetic algorithms. Complexity, 12(3):27-29, 2007.
    • (2007) Complexity , vol.12 , Issue.3 , pp. 27-29
    • Goldberg, D.E.1    Sastry, K.2    Llorà, X.3
  • 14
    • 0003846045 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Technical Report MSR-TR-94-09, Microsoft Research, Redmond, WA
    • D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Technical Report MSR-TR-94-09, Microsoft Research, Redmond, WA. 1994.
    • (1994)
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 15
    • 85012775611 scopus 로고
    • Propagating uncertainty in Bayesian networks by probabilistic logic sampling
    • J. F. Lemmer and L. N. Kanal, editors, Elsevier, Amsterdam, London, New York
    • M. Henrion. Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In J. F. Lemmer and L. N. Kanal, editors, Uncertainty in Artificial Intelligence, pages 149-163. Elsevier, Amsterdam, London, New York, 1988.
    • (1988) Uncertainty in Artificial Intelligence , pp. 149-163
    • Henrion, M.1
  • 16
    • 0000086731 scopus 로고
    • Influence diagrams
    • R. A. Howard and J. E. Matheson, editors, Strategic Decisions Group, Menlo Park, CA
    • R. A. Howard and J. E. Matheson. Influence diagrams. In R. A. Howard and J. E. Matheson, editors, Readings on the principles and applications of decision analysis, volume II, pages 721-762, Strategic Decisions Group, Menlo Park, CA, 1981,
    • (1981) Readings on the principles and applications of decision analysis , vol.2 , pp. 721-762
    • Howard, R.A.1    Matheson, J.E.2
  • 20
    • 0033258156 scopus 로고    scopus 로고
    • FDA - A scalable evolutionary algorithm for the optimization of additively decomposed functions
    • H. Mühlenbein and T. Mahnig, FDA - A scalable evolutionary algorithm for the optimization of additively decomposed functions. Evolutionary Computation, 7(4):353-376, 1999.
    • (1999) Evolutionary Computation , vol.7 , Issue.4 , pp. 353-376
    • Mühlenbein, H.1    Mahnig, T.2
  • 21
    • 84958959530 scopus 로고    scopus 로고
    • From recombination of genes to the estimation of distributions I. Binary parameters
    • H. Mühlenbein and G. Paaß. From recombination of genes to the estimation of distributions I. Binary parameters. Parallel Problem Solving from Nature, pages 178-187, 1996.
    • (1996) Parallel Problem Solving from Nature , pp. 178-187
    • Mühlenbein, H.1    Paaß, G.2
  • 22
    • 0003140039 scopus 로고
    • Predictive models for the breeder genetic algorithm: I. Continuous parameter optimization
    • H. Mühlenbein and D. Schlierkamp-Voosen. Predictive models for the breeder genetic algorithm: I. Continuous parameter optimization, Evolutionary Computation, 1(1):25-49, 1993.
    • (1993) Evolutionary Computation , vol.1 , Issue.1 , pp. 25-49
    • Mühlenbein, H.1    Schlierkamp-Voosen, D.2
  • 29
    • 84911584312 scopus 로고
    • Shortest connection networks and some generalizations
    • R. Prim, Shortest connection networks and some generalizations. Bell Systems Technical Journal, 36:1389-1401, 1957.
    • (1957) Bell Systems Technical Journal , vol.36 , pp. 1389-1401
    • Prim, R.1
  • 30
    • 4344572502 scopus 로고    scopus 로고
    • Master's thesis, University of Illinois at Urbana-Champaign, Department of General Engineering, Urbana, IL
    • K. Sastry, Evaluation-relaxation schemes for genetic and evolutionary algorithms. Master's thesis, University of Illinois at Urbana-Champaign, Department of General Engineering, Urbana, IL. 2001.
    • (2001) Evaluation-relaxation schemes for genetic and evolutionary algorithms
    • Sastry, K.1
  • 31
    • 57349091573 scopus 로고    scopus 로고
    • K. Sastry, D. E. Goldberg, and X. Llorà, Towards billion bit optimization via efficient genetic algorithms, IlliGAL Report No, 2007007, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL. 2007.
    • K. Sastry, D. E. Goldberg, and X. Llorà, Towards billion bit optimization via efficient genetic algorithms, IlliGAL Report No, 2007007, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL. 2007.
  • 32
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:461-464, 1978.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 33
    • 0033258368 scopus 로고    scopus 로고
    • Scalability problems of simple genetic algorithms
    • D. Thierens, Scalability problems of simple genetic algorithms, Evolutionary Computation, 7(4):331-352, 1999.
    • (1999) Evolutionary Computation , vol.7 , Issue.4 , pp. 331-352
    • Thierens, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.