메뉴 건너뛰기




Volumn , Issue , 2009, Pages 55-64

Using large-scale web data to facilitate textual query based retrieval of consumer photos

Author keywords

Cross domain learning; Large scale web data; Textual query based consumer photo retrieval

Indexed keywords

CLASSIFICATION METHODS; CONSUMER IMAGES; CONSUMER PHOTO COLLECTIONS; CROSS-DOMAIN; DATA SETS; DECISION STUMPS; EXPLOSIVE GROWTH; INVERTED FILES; K-NEAREST NEIGHBORS; MOBILE PHONE CAMERAS; PHOTO RETRIEVAL; RELEVANCE FEEDBACK METHOD; RESPONSE TIME; TEXTUAL DESCRIPTION; TEXTUAL QUERY; WEB DATA; WEB IMAGES;

EID: 72549087420     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1631272.1631283     Document Type: Conference Paper
Times cited : (23)

References (38)
  • 1
    • 84860524227 scopus 로고    scopus 로고
    • J. Blitzer, M. Dredze, and F. Pereira. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In ACL, 2007.
    • J. Blitzer, M. Dredze, and F. Pereira. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In ACL, 2007.
  • 2
    • 70350662970 scopus 로고    scopus 로고
    • Annotating photo collections bylab el propagation according to multiple similaritycu es
    • L. Cao, J. Luo, and T. S. Huang. Annotating photo collections bylab el propagation according to multiple similaritycu es. In ACM MM, 2008.
    • (2008) ACM , vol.2000
    • Cao, L.1    Luo, J.2    Huang, T.S.3
  • 3
    • 37849008244 scopus 로고    scopus 로고
    • Large-scale multimodal semantic concept detection for consumer video
    • S.-F. Chang et al. Large-scale multimodal semantic concept detection for consumer video. In ACM SIGMM Workshop on MIR, 2007.
    • (2007) ACM SIGMM Workshop on MIR
    • Chang, S.-F.1
  • 4
    • 84905180243 scopus 로고    scopus 로고
    • Columbia University/VIREO-CityU/IRIT TRECVID2008 High-Level Feature Extraction and Interactive Video Search
    • S.-F. Chang et al. Columbia University/VIREO-CityU/IRIT TRECVID2008 High-Level Feature Extraction and Interactive Video Search. In NIST TRECVID Workshop, 2008.
    • (2008) NIST TRECVID Workshop
    • Chang, S.-F.1
  • 5
    • 74049158146 scopus 로고    scopus 로고
    • NUS-WIDE: A real-world web image database from national universityof singapore
    • T.-S. Chua et al. NUS-WIDE: A real-world web image database from national universityof singapore. In CIVR, 2009.
    • (2009) CIVR
    • Chua, T.-S.1
  • 6
    • 43249093335 scopus 로고    scopus 로고
    • Image retrieval: Ideas, influences, and trends of the new age
    • R. Datta et al. Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys,1-60, 2008.
    • (2008) ACM Computing Surveys , vol.1-60
    • Datta, R.1
  • 7
    • 84860513476 scopus 로고    scopus 로고
    • H. Daumé III. Frustratinglyea sydo main adaptation. In ACL, 2007.
    • H. Daumé III. Frustratinglyea sydo main adaptation. In ACL, 2007.
  • 8
    • 70450185098 scopus 로고    scopus 로고
    • Domain Transfer SVM for Video Concept Detection
    • L. Duan et al. Domain Transfer SVM for Video Concept Detection. In CVPR, 2009.
    • (2009) CVPR
    • Duan, L.1
  • 9
    • 79953064532 scopus 로고    scopus 로고
    • Domain Adaptation from Multiple Sources via AuxiliaryClassifi ers
    • L. Duan et al. Domain Adaptation from Multiple Sources via AuxiliaryClassifi ers. In ICML, 2009.
    • (2009) ICML
    • Duan, L.1
  • 10
    • 0038401728 scopus 로고    scopus 로고
    • Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary
    • P. Duygulu et al. Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary. In ECCV, 2002.
    • (2002) ECCV
    • Duygulu, P.1
  • 12
    • 24644456520 scopus 로고    scopus 로고
    • A Visual CategoryFilt er for Google Images
    • R. Fergus, P. Perona,and A. Zisserman. A Visual CategoryFilt er for Google Images. In ECCV, 2004.
    • (2004) ECCV
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 13
    • 13444263430 scopus 로고    scopus 로고
    • Manifold-ranking based image retrieval
    • J. He et al. Manifold-ranking based image retrieval. In ACM MM, 2004.
    • (2004) ACM , vol.2000
    • He, J.1
  • 14
    • 13444266062 scopus 로고    scopus 로고
    • Incremental semi-supervised subspace learning for image retrieval
    • X. He. Incremental semi-supervised subspace learning for image retrieval. In ACM MM, 2004.
    • (2004) ACM , vol.2000
    • He, X.1
  • 15
    • 51949109425 scopus 로고    scopus 로고
    • Semi-supervised svm batch mode active learning for image retrieval
    • S. Hoi et al. Semi-supervised svm batch mode active learning for image retrieval. In CVPR, 2008.
    • (2008) CVPR
    • Hoi, S.1
  • 16
    • 70350637625 scopus 로고    scopus 로고
    • Annotating personal albums via web mining
    • J. Jia, N. Yu, and X.-S. Hua. Annotating personal albums via web mining. In ACM MM, 2008.
    • (2008) ACM , vol.2000
    • Jia, J.1    Yu, N.2    Hua, X.-S.3
  • 17
    • 68349087851 scopus 로고    scopus 로고
    • Cross-domain learning methods for high-level visual concept classification
    • W. Jiang et al. Cross-domain learning methods for high-level visual concept classification. In ICIP, 2008.
    • (2008) ICIP
    • Jiang, W.1
  • 18
    • 43249117136 scopus 로고    scopus 로고
    • Real-time computerized annotation of pictures
    • J. Li and J. Z. Wang. Real-time computerized annotation of pictures. T-PAMI, 985-1002, 2008.
    • (2008) T-PAMI , vol.985-1002
    • Li, J.1    Wang, J.Z.2
  • 19
    • 34547198893 scopus 로고    scopus 로고
    • Image annotation bylarge- scale content-based image retrieval
    • X. Li et al. Image annotation bylarge- scale content-based image retrieval. In ACM MM, 2006.
    • (2006) ACM , vol.2000
    • Li, X.1
  • 20
    • 72549106183 scopus 로고    scopus 로고
    • Kodak's consumer video benchmark data set: Concept definition and annotation
    • A. Loui et al. Kodak's consumer video benchmark data set: concept definition and annotation. In ACM Workshop on MIR, 2007.
    • (2007) ACM Workshop on MIR
    • Loui, A.1
  • 21
    • 0031339847 scopus 로고    scopus 로고
    • Content-based image retrieval with relevance feedback in mars
    • Y. Rui, T. S. Huang, and S. Mehrotra. Content-based image retrieval with relevance feedback in mars. In ICIP, 1997.
    • (1997) ICIP
    • Rui, Y.1    Huang, T.S.2    Mehrotra, S.3
  • 22
    • 0034498523 scopus 로고    scopus 로고
    • Content-based image retrieval at the end of the earlyy ears
    • A. Smeulders et al. Content-based image retrieval at the end of the earlyy ears. T-PAMI,1349-1380, 2000.
    • (2000) T-PAMI , vol.1349-1380
    • Smeulders, A.1
  • 23
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
    • D. Tao et al. Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. T-PAMI, 1088-1099, 2006.
    • (2006) T-PAMI , vol.1088-1099
    • Tao, D.1
  • 24
    • 0034792634 scopus 로고    scopus 로고
    • Support vector machine active learning for image retrieval
    • S. Tong and E. Chang. Support vector machine active learning for image retrieval. In ACM MM, 2001.
    • (2001) ACM , vol.2000
    • Tong, S.1    Chang, E.2
  • 25
    • 54749092170 scopus 로고
    • 80 million tinyimages: A large dataset for non-parametric object and scene recognition
    • A. Torralba, R. Fergus, and W. T. Freeman. 80 million tinyimages: a large dataset for non-parametric object and scene recognition. T-PAMI, 1958-1970, 2008.
    • (1958) T-PAMI , pp. 2008
    • Torralba, A.1    Fergus, R.2    Freeman, W.T.3
  • 26
    • 51949119257 scopus 로고    scopus 로고
    • Small codes and large databases for recognition
    • A. Torralba, R. Fergus, and Y. Weiss. Small codes and large databases for recognition. In CVPR, 2008.
    • (2008) CVPR
    • Torralba, A.1    Fergus, R.2    Weiss, Y.3
  • 27
    • 2142812371 scopus 로고    scopus 로고
    • Robust real-time face detection
    • P. Viola and M. Jones. Robust real-time face detection. IJCV, 137-154, 2004.
    • (2004) IJCV , vol.137-154
    • Viola, P.1    Jones, M.2
  • 28
    • 34948858988 scopus 로고    scopus 로고
    • Content-based image annotation refinement
    • C. Wang et al. Content-based image annotation refinement. In CVPR, 2007.
    • (2007) CVPR
    • Wang, C.1
  • 29
    • 57349150196 scopus 로고    scopus 로고
    • Learning to reduce the semantic gap in web image retrieval and annotation
    • C. Wang, L. Zhang, and H. Zhang. Learning to reduce the semantic gap in web image retrieval and annotation. In SIGIR, 2008.
    • (2008) SIGIR
    • Wang, C.1    Zhang, L.2    Zhang, H.3
  • 30
    • 0035440673 scopus 로고    scopus 로고
    • SIMPLIcity: Semantics-sensitive integrated matching for picture libraries
    • J. Z. Wang, J. Li, and G. Wiederhold. SIMPLIcity: Semantics-sensitive integrated matching for picture libraries. T-PAMI,947-963, 2001.
    • (2001) T-PAMI , vol.947-963
    • Wang, J.Z.1    Li, J.2    Wiederhold, G.3
  • 31
    • 33845569752 scopus 로고    scopus 로고
    • AnnoSearch: Image auto-annotation by search
    • X. Wang et al. AnnoSearch: Image auto-annotation by search. In CVPR, 2006.
    • (2006) CVPR
    • Wang, X.1
  • 32
    • 54849395400 scopus 로고
    • Annotating images bymi ning image search results
    • X. Wang et al. Annotating images bymi ning image search results. T-PAMI, 1919-1932, 2008.
    • (1919) T-PAMI , pp. 2008
    • Wang, X.1
  • 35
    • 14344266561 scopus 로고    scopus 로고
    • Improving SVM accuracy byt raining on auxiliary data sources
    • P. Wu and T. G. Dietterich. Improving SVM accuracy byt raining on auxiliary data sources. In ICML, 2004.
    • (2004) ICML
    • Wu, P.1    Dietterich, T.G.2
  • 36
    • 37849026107 scopus 로고    scopus 로고
    • Cross-domain video concept detection using adaptive SVMs
    • J. Yang, R. Yan, and A. G. Hauptmann. Cross-domain video concept detection using adaptive SVMs. In ACM MM, 2007.
    • (2007) ACM , vol.2000
    • Yang, J.1    Yan, R.2    Hauptmann, A.G.3
  • 37
    • 0035158947 scopus 로고    scopus 로고
    • Support vector machine learning for image retrieval
    • L. Zhang, F. Lin, and B. Zhang. Support vector machine learning for image retrieval. In ICIP, 2001.
    • (2001) ICIP
    • Zhang, L.1    Lin, F.2    Zhang, B.3
  • 38
    • 0035680168 scopus 로고    scopus 로고
    • Small sample learning during multimedia retrieval using biasmap
    • X. Zhou and T. Huang. Small sample learning during multimedia retrieval using biasmap. In CVPR, 2001.
    • (2001) CVPR
    • Zhou, X.1    Huang, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.