메뉴 건너뛰기




Volumn , Issue , 2009, Pages 158-163

Multi-cue based visual tracking in clutter scenes with occlusions

Author keywords

[No Author keywords available]

Indexed keywords

DATA SETS; DETECTION AND TRACKING; GLOBAL FEATURE; LOCAL FEATURE; OBJECT TRACKING; OBJECTIVE EVALUATION; QUANTITATIVE ANALYSIS; SHAPE MODEL; VIDEO ANALYSIS; VISUAL TRACKING;

EID: 72449204329     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/AVSS.2009.56     Document Type: Conference Paper
Times cited : (4)

References (15)
  • 1
    • 44849115705 scopus 로고    scopus 로고
    • Tracking by using dynamic shape model learning in the presence of occlusion
    • M. Asadi, A. Dore, A. Beoldo, and C. Regazzoni. Tracking by using dynamic shape model learning in the presence of occlusion. In AVSS, 2007. 1, 2
    • (2007) AVSS , vol.1 , pp. 2
    • Asadi, M.1    Dore, A.2    Beoldo, A.3    Regazzoni, C.4
  • 2
    • 60849085195 scopus 로고    scopus 로고
    • A probabilistic bayesian framework for model-based object tracking using undecimated wavelet packet descriptors
    • M. Asadi and C. S. Regazzoni. A probabilistic bayesian framework for model-based object tracking using undecimated wavelet packet descriptors. In AVSS, 2008. 1
    • (2008) AVSS , pp. 1
    • Asadi, M.1    Regazzoni, C.S.2
  • 4
    • 72449177141 scopus 로고    scopus 로고
    • CAVIAR. http://homepages.inf.ed.ac.uk/rbf/caviar/. funded by the EC's Information Society Technology's programme project IST 2001 37540, 2004. 4
    • CAVIAR. http://homepages.inf.ed.ac.uk/rbf/caviar/. funded by the EC's Information Society Technology's programme project IST 2001 37540, 2004. 4
  • 6
    • 0442312138 scopus 로고    scopus 로고
    • Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking
    • 2511, November
    • A. Elgammal, R. Duraiswami, and L. Davis. Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking. PAMI, 25(11):1499-1504, November 2003. 1
    • (2003) PAMI , vol.1499-1504 , pp. 1
    • Elgammal, A.1    Duraiswami, R.2    Davis, L.3
  • 7
    • 24644460288 scopus 로고    scopus 로고
    • Tracking multiple objects through occlusions
    • Y. Huang and I. Essa. Tracking multiple objects through occlusions. In CVPR, 2005. 1
    • (2005) CVPR , pp. 1
    • Huang, Y.1    Essa, I.2
  • 8
    • 51949108825 scopus 로고    scopus 로고
    • Real time object tracking based on dynamic feature grouping with background subtraction
    • Z. Kim. Real time object tracking based on dynamic feature grouping with background subtraction. In CVPR, 2008. 1
    • (2008) CVPR , pp. 1
    • Kim, Z.1
  • 9
    • 72449174551 scopus 로고    scopus 로고
    • Performance evaluation of a real time video surveillance system
    • S. Mueller-Schneiders, T. Jaeger, H. S. Loos, and W. Niem. Performance evaluation of a real time video surveillance system. In VS-PETS, 2005. 2
    • (2005) VS-PETS , pp. 2
    • Mueller-Schneiders, S.1    Jaeger, T.2    Loos, H.S.3    Niem, W.4
  • 10
    • 44849088395 scopus 로고    scopus 로고
    • A. Nghiem, F. Bremond, M. Thonnat, and V. Valentin. Etiseo, performance evaluation for video surveillance systems. pages 476-481, 2007. 4
    • A. Nghiem, F. Bremond, M. Thonnat, and V. Valentin. Etiseo, performance evaluation for video surveillance systems. pages 476-481, 2007. 4
  • 11
    • 52949100952 scopus 로고    scopus 로고
    • Feature classification for robust shape based collaborative tracking and model updating
    • C. S. Regazzoni, M. Asadi, and F. Monti. Feature classification for robust shape based collaborative tracking and model updating. Journal on Image and Video Processing, 2008, 2008. 1
    • (2008) Journal on Image and Video Processing , vol.2008 , pp. 1
    • Regazzoni, C.S.1    Asadi, M.2    Monti, F.3
  • 12
    • 34547379374 scopus 로고    scopus 로고
    • O. Sidla, Y. Lypetskyy, N. Brandle, and S. Seer. Pedestrian detection and tracking for counting applications in crowded situations. In AVSBS, pages 70-70, 2006. 1
    • O. Sidla, Y. Lypetskyy, N. Brandle, and S. Seer. Pedestrian detection and tracking for counting applications in crowded situations. In AVSBS, pages 70-70, 2006. 1
  • 13
    • 0032299333 scopus 로고    scopus 로고
    • Computer Vision and Pattern Recognition, 1998. Proceedings. 1998 IEEE Computer Society Conference on
    • Jun
    • T. Tommasini, A. Fusiello, E. Trucco, and V. Roberto. Making good features track better. Computer Vision and Pattern Recognition, 1998. Proceedings. 1998 IEEE Computer Society Conference on, pages 178-183, Jun 1998. 1, 3
    • (1998) , vol.1
    • Tommasini, T.1    Fusiello, A.2    Trucco, E.3    Roberto, V.4
  • 14
    • 72449170789 scopus 로고    scopus 로고
    • D. Xu, Y. Wang, and J. An. Applying a new spatial color histogram in mean-shift based tracking algorithm. In Image and Vision Computing New Zealand (IVCNZ), 2005. 1
    • D. Xu, Y. Wang, and J. An. Applying a new spatial color histogram in mean-shift based tracking algorithm. In Image and Vision Computing New Zealand (IVCNZ), 2005. 1
  • 15
    • 43049088785 scopus 로고    scopus 로고
    • L. Zhu, J. Zhou, and J. Song. Tracking multiple objects through occlusion with online sampling and position estimation. Pattern Recognition, 41(8):2447-2460, Aug. 2008. printed. 1
    • L. Zhu, J. Zhou, and J. Song. Tracking multiple objects through occlusion with online sampling and position estimation. Pattern Recognition, 41(8):2447-2460, Aug. 2008. printed. 1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.