메뉴 건너뛰기




Volumn , Issue , 2009, Pages

Establishing phishing provenance using orthographic features

Author keywords

Clustering; Feature elimination; Feature selection; Modified global k means

Indexed keywords

CLUSTER DOCUMENTS; CLUSTERING FEATURE; CYBERCRIMINALS; EXPERIMENTAL EVALUATION; FEATURE SELECTION; K-MEANS; MESSAGE DETECTION; MODIFIED GLOBAL; NOVEL METHODS; OBJECTIVE FUNCTION VALUES; PHISHING; REDUNDANT FEATURES; TOLERANCE VALUES;

EID: 72449183090     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ECRIME.2009.5342604     Document Type: Conference Paper
Times cited : (17)

References (29)
  • 1
    • 42049084142 scopus 로고    scopus 로고
    • Writeprints: A stylometric approach to identity-level identification and similarity detection in cyberspace
    • Ahmed Abbasi and Hsinchun Chen. Writeprints: A stylometric approach to identity-level identification and similarity detection in cyberspace. ACM Trans. Inf. Syst., 26(2):1-29, 2008.
    • (2008) ACM Trans. Inf. Syst , vol.26 , Issue.2 , pp. 1-29
    • Abbasi, A.1    Chen, H.2
  • 3
    • 26844576391 scopus 로고    scopus 로고
    • A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems
    • Adil M. Bagirow and John Yearwood. A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems. European Journal of Operatioanl Research, 170:578-596, 2006.
    • (2006) European Journal of Operatioanl Research , vol.170 , pp. 578-596
    • Bagirow, A.M.1    Yearwood, J.2
  • 6
    • 72449145674 scopus 로고    scopus 로고
    • Technical report
    • D. Boneh. Spoofguard. Technical report, http://crypto.stanford.edu/ SpoofGuard/.
    • Boneh, D.1    Spoofguard2
  • 11
    • 6344251104 scopus 로고    scopus 로고
    • Text clustering based on background knowledge
    • Technical report, University of Karlsrube, Institute AIFB
    • A. Hotho, S.Staab, and G. Stumme. Text clustering based on background knowledge. Technical report, University of Karlsrube, Institute AIFB, 2003.
    • (2003)
    • Hotho, A.1    Staab, S.2    Stumme, G.3
  • 12
    • 72449166808 scopus 로고    scopus 로고
    • working group
    • http://www.antiphishing.org/. Anti-phishing working group.
  • 13
    • 72449185046 scopus 로고    scopus 로고
    • http://www.apwg.org/reports/APWG-GlobalPhishingSurvey2H2008.pdf. Global phishing survey: Trends and domain name used in 2h2008, May 2009.
    • http://www.apwg.org/reports/APWG-GlobalPhishingSurvey2H2008.pdf. Global phishing survey: Trends and domain name used in 2h2008, May 2009.
  • 14
    • 72449156462 scopus 로고    scopus 로고
    • http://www.gartner.com/it/page.jsp?id=565125. Agartner.
  • 17
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machine
    • T. Joachims. Transductive inference for text classification using support vector machine. In Proceeding of ICML-99, 1999.
    • (1999) Proceeding of ICML-99
    • Joachims, T.1
  • 18
    • 72449181200 scopus 로고    scopus 로고
    • Protecting users against phishing attacks
    • Engin Kirda and Christopher Kruegel. Protecting users against phishing attacks. The Computer Journal, 2005.
    • (2005) The Computer Journal
    • Kirda, E.1    Kruegel, C.2
  • 23
    • 58049158943 scopus 로고    scopus 로고
    • Forensic characteristics of phishing - petty theft or organized crime?
    • Stephen McCombie, Paul Watters, Alex Ng, and Brett Watson. Forensic characteristics of phishing - petty theft or organized crime? In WEBIST, pages 149-157, 2008.
    • (2008) WEBIST , pp. 149-157
    • McCombie, S.1    Watters, P.2    Ng, A.3    Watson, B.4
  • 28
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Fabrizio Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys, 34(1):1-47, 2002.
    • (2002) ACM Computing Surveys , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 29
    • 72449210897 scopus 로고    scopus 로고
    • Liu Wenyin, Guanglin Huang, Liu Xiaoyue, Zhang Min, and Xiaotie Deng. Detection of phishing webpages based on visual similarity
    • Liu Wenyin, Guanglin Huang, Liu Xiaoyue, Zhang Min, and Xiaotie Deng. Detection of phishing webpages based on visual similarity.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.