-
1
-
-
2542631648
-
A kernel method for multi-labelled classification
-
A. Elisseef and J.Weston. A kernel method for multi-labelled classification. In Neural Information Processing Systems, volume 14, pages 681-687, 2001.
-
(2001)
Neural Information Processing Systems
, vol.14
, pp. 681-687
-
-
Elisseef, A.1
Weston, J.2
-
4
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
D. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91-110, 2004.
-
(2004)
International Journal of Computer Vision
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.1
-
5
-
-
72449168789
-
-
F. Comite, R. Gilleron, and M. Tommasi. Learning multi-label altenating decision tree from texts and data. In Machine Learning and Data Mining in Pattern Recognition, pages 251-274, 2003.
-
F. Comite, R. Gilleron, and M. Tommasi. Learning multi-label altenating decision tree from texts and data. In Machine Learning and Data Mining in Pattern Recognition, pages 251-274, 2003.
-
-
-
-
7
-
-
72449159089
-
-
http://www.acm.caltech.edu/l1magic
-
-
-
-
8
-
-
1542347786
-
Automatic image annotation and retrieval using cross-media relevance models
-
J. Jeon, V. Lavrenko, and R. Manmatha. Automatic image annotation and retrieval using cross-media relevance models. In SIGIR Forum, pages 119-126, 2003.
-
(2003)
SIGIR Forum
, pp. 119-126
-
-
Jeon, J.1
Lavrenko, V.2
Manmatha, R.3
-
9
-
-
37849050214
-
Dual cross-media relevance model for image annotation
-
J. Liu, B. Wang, M. Li, Z. Li, W. Ma, H. Lu, and S. Ma. Dual cross-media relevance model for image annotation. In ACM International Conference on Multimedia, pages 605-614, 2007.
-
(2007)
ACM International Conference on Multimedia
, pp. 605-614
-
-
Liu, J.1
Wang, B.2
Li, M.3
Li, Z.4
Ma, W.5
Lu, H.6
Ma, S.7
-
10
-
-
33745824267
-
-
J. Shotton, J.Winn, C. Rother, and A. Criminisi. Textonboost: Joint appearance, shape and context modeling for mulit-class object recognition and segmentation. In European Conference on Computer Vision, pages 1-15, 2006.
-
J. Shotton, J.Winn, C. Rother, and A. Criminisi. Textonboost: Joint appearance, shape and context modeling for mulit-class object recognition and segmentation. In European Conference on Computer Vision, pages 1-15, 2006.
-
-
-
-
11
-
-
33745948591
-
Locus: Learning object classes with unsupervised segmentation
-
J. Winn and N. Jojic. Locus: Learning object classes with unsupervised segmentation. In IEEE International Conference on Computer Vision, volume 1, pages 756-763, 2005.
-
(2005)
IEEE International Conference on Computer Vision
, vol.1
, pp. 756-763
-
-
Winn, J.1
Jojic, N.2
-
12
-
-
37849034618
-
Exploiting spatial context constraints for automatic image region annotation
-
J. Yuan, J. Li, and B. Zhang. Exploiting spatial context constraints for automatic image region annotation. In ACM International Conference on Multimedia, pages 595-604, 2007.
-
(2007)
ACM International Conference on Multimedia
, pp. 595-604
-
-
Yuan, J.1
Li, J.2
Zhang, B.3
-
13
-
-
50649087214
-
Spatially coherent latent topic model for concurrent object segmentation and classification
-
L. Cao and F. Li. Spatially coherent latent topic model for concurrent object segmentation and classification. In IEEE International Conference on Computer Vision, pages 1-8, 2007.
-
(2007)
IEEE International Conference on Computer Vision
, pp. 1-8
-
-
Cao, L.1
Li, F.2
-
14
-
-
3042597440
-
Learning multilabel scene classification
-
M. Boutell, J. Luo, X. Shen, and C. Brown. Learning multilabel scene classification. Pattern Recognition, 37(9):1757-1771, 2004.
-
(2004)
Pattern Recognition
, vol.37
, Issue.9
, pp. 1757-1771
-
-
Boutell, M.1
Luo, J.2
Shen, X.3
Brown, C.4
-
16
-
-
33947681316
-
Ml-knn: A lazy learning approach to multi-label learning
-
M. Zhang and Z. Zhou. Ml-knn: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7):2038-2048, 2007.
-
(2007)
Pattern Recognition
, vol.40
, Issue.7
, pp. 2038-2048
-
-
Zhang, M.1
Zhou, Z.2
-
18
-
-
84937572644
-
Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary
-
P. Duygulu, K. Barnard, J. de Freitas, D. Forsyth. Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary. In European Conference on Computer Vision, pages 97-112, 2002.
-
(2002)
European Conference on Computer Vision
, pp. 97-112
-
-
Duygulu, P.1
Barnard, K.2
de Freitas, J.3
Forsyth, D.4
-
20
-
-
29144499905
-
Working set selection using the second order information for training svm
-
R. Fan, P. Chen, and C. Lin. Working set selection using the second order information for training svm. In Journal of Machine Learning Research, volume 6, pages 1889-1918, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1889-1918
-
-
Fan, R.1
Chen, P.2
Lin, C.3
-
22
-
-
13444292911
-
Effective automatic image annotation via a coherent language model and active learning
-
R. Jin, J. Y. Chai, and L. Si. Effective automatic image annotation via a coherent language model and active learning. In ACM International Conference on Multimedia, pages 892-899, 2004.
-
(2004)
ACM International Conference on Multimedia
, pp. 892-899
-
-
Jin, R.1
Chai, J.Y.2
Si, L.3
-
23
-
-
5044225521
-
Multiple bernoulli relevance models for image and video annotation
-
S. Feng, R. Manmatha, and V. Lavrenko. Multiple bernoulli relevance models for image and video annotation. In IEEE Conference on Computer Vision and Pattern Recognition, volume 2, pages 1002-1009, 2004.
-
(2004)
IEEE Conference on Computer Vision and Pattern Recognition
, vol.2
, pp. 1002-1009
-
-
Feng, S.1
Manmatha, R.2
Lavrenko, V.3
-
24
-
-
74049158146
-
Nus-wide: A real-world web image database from national university of singapore
-
T. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng. Nus-wide: A real-world web image database from national university of singapore. In ACM International Conference on Image and Video Retrieval, 2009.
-
(2009)
ACM International Conference on Image and Video Retrieval
-
-
Chua, T.1
Tang, J.2
Hong, R.3
Li, H.4
Luo, Z.5
Zheng, Y.6
-
27
-
-
51949108077
-
Unsupervised learning of probabilistic object models (poms) for object classification, segmentation and recognition
-
Y. Chen. Unsupervised learning of probabilistic object models (poms) for object classification, segmentation and recognition. In IEEE Conference on Computer Vision and Pattern Recognition, 2008.
-
(2008)
IEEE Conference on Computer Vision and Pattern Recognition
-
-
Chen, Y.1
|