메뉴 건너뛰기




Volumn , Issue , 2009, Pages 115-124

Label to region by bi-layer sparsity priors

Author keywords

Bi layer sparse coding; Image annotation; Image parsing; Label to region assignment

Indexed keywords

BI-LAYER; IMAGE ANNOTATION; IMAGE PARSING; IMAGE PATCHES; IMAGE SETS; LABEL PROPAGATION; PUBLIC IMAGE; SEGMENTED IMAGES; SPARSE CODING; TEST IMAGES;

EID: 72449136725     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1631272.1631291     Document Type: Conference Paper
Times cited : (69)

References (27)
  • 1
    • 2542631648 scopus 로고    scopus 로고
    • A kernel method for multi-labelled classification
    • A. Elisseef and J.Weston. A kernel method for multi-labelled classification. In Neural Information Processing Systems, volume 14, pages 681-687, 2001.
    • (2001) Neural Information Processing Systems , vol.14 , pp. 681-687
    • Elisseef, A.1    Weston, J.2
  • 4
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91-110, 2004.
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 5
    • 72449168789 scopus 로고    scopus 로고
    • F. Comite, R. Gilleron, and M. Tommasi. Learning multi-label altenating decision tree from texts and data. In Machine Learning and Data Mining in Pattern Recognition, pages 251-274, 2003.
    • F. Comite, R. Gilleron, and M. Tommasi. Learning multi-label altenating decision tree from texts and data. In Machine Learning and Data Mining in Pattern Recognition, pages 251-274, 2003.
  • 7
    • 72449159089 scopus 로고    scopus 로고
    • http://www.acm.caltech.edu/l1magic
  • 8
    • 1542347786 scopus 로고    scopus 로고
    • Automatic image annotation and retrieval using cross-media relevance models
    • J. Jeon, V. Lavrenko, and R. Manmatha. Automatic image annotation and retrieval using cross-media relevance models. In SIGIR Forum, pages 119-126, 2003.
    • (2003) SIGIR Forum , pp. 119-126
    • Jeon, J.1    Lavrenko, V.2    Manmatha, R.3
  • 10
    • 33745824267 scopus 로고    scopus 로고
    • J. Shotton, J.Winn, C. Rother, and A. Criminisi. Textonboost: Joint appearance, shape and context modeling for mulit-class object recognition and segmentation. In European Conference on Computer Vision, pages 1-15, 2006.
    • J. Shotton, J.Winn, C. Rother, and A. Criminisi. Textonboost: Joint appearance, shape and context modeling for mulit-class object recognition and segmentation. In European Conference on Computer Vision, pages 1-15, 2006.
  • 11
    • 33745948591 scopus 로고    scopus 로고
    • Locus: Learning object classes with unsupervised segmentation
    • J. Winn and N. Jojic. Locus: Learning object classes with unsupervised segmentation. In IEEE International Conference on Computer Vision, volume 1, pages 756-763, 2005.
    • (2005) IEEE International Conference on Computer Vision , vol.1 , pp. 756-763
    • Winn, J.1    Jojic, N.2
  • 12
    • 37849034618 scopus 로고    scopus 로고
    • Exploiting spatial context constraints for automatic image region annotation
    • J. Yuan, J. Li, and B. Zhang. Exploiting spatial context constraints for automatic image region annotation. In ACM International Conference on Multimedia, pages 595-604, 2007.
    • (2007) ACM International Conference on Multimedia , pp. 595-604
    • Yuan, J.1    Li, J.2    Zhang, B.3
  • 13
    • 50649087214 scopus 로고    scopus 로고
    • Spatially coherent latent topic model for concurrent object segmentation and classification
    • L. Cao and F. Li. Spatially coherent latent topic model for concurrent object segmentation and classification. In IEEE International Conference on Computer Vision, pages 1-8, 2007.
    • (2007) IEEE International Conference on Computer Vision , pp. 1-8
    • Cao, L.1    Li, F.2
  • 14
    • 3042597440 scopus 로고    scopus 로고
    • Learning multilabel scene classification
    • M. Boutell, J. Luo, X. Shen, and C. Brown. Learning multilabel scene classification. Pattern Recognition, 37(9):1757-1771, 2004.
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.1    Luo, J.2    Shen, X.3    Brown, C.4
  • 16
    • 33947681316 scopus 로고    scopus 로고
    • Ml-knn: A lazy learning approach to multi-label learning
    • M. Zhang and Z. Zhou. Ml-knn: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7):2038-2048, 2007.
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.1    Zhou, Z.2
  • 20
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using the second order information for training svm
    • R. Fan, P. Chen, and C. Lin. Working set selection using the second order information for training svm. In Journal of Machine Learning Research, volume 6, pages 1889-1918, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.1    Chen, P.2    Lin, C.3
  • 22
    • 13444292911 scopus 로고    scopus 로고
    • Effective automatic image annotation via a coherent language model and active learning
    • R. Jin, J. Y. Chai, and L. Si. Effective automatic image annotation via a coherent language model and active learning. In ACM International Conference on Multimedia, pages 892-899, 2004.
    • (2004) ACM International Conference on Multimedia , pp. 892-899
    • Jin, R.1    Chai, J.Y.2    Si, L.3
  • 27
    • 51949108077 scopus 로고    scopus 로고
    • Unsupervised learning of probabilistic object models (poms) for object classification, segmentation and recognition
    • Y. Chen. Unsupervised learning of probabilistic object models (poms) for object classification, segmentation and recognition. In IEEE Conference on Computer Vision and Pattern Recognition, 2008.
    • (2008) IEEE Conference on Computer Vision and Pattern Recognition
    • Chen, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.