메뉴 건너뛰기




Volumn , Issue , 2009, Pages 646-649

Unmixing hyperspectral images using a normal compositional model and MCMC methods

Author keywords

Bayesian inference; Hyperspectral images; Monte Carlo methods; Normal compositional model; Spectral unmixing

Indexed keywords

ADDITIVITY; BAYESIAN ALGORITHMS; BAYESIAN ESTIMATORS; BAYESIAN INFERENCE; COMPOSITIONAL MODELS; CONJUGATE PRIOR; ENDMEMBER EXTRACTION ALGORITHMS; ENDMEMBERS; GAUSSIAN VECTOR; GIBBS ALGORITHMS; HYPER-PARAMETER; HYPER-SPECTRAL IMAGES; LINEAR COMBINATIONS; MCMC METHOD; MODEL UNCERTAINTIES; POSTERIOR DISTRIBUTIONS; REAL IMAGES; SIMULATION RESULT; SPECTRAL UNMIXING; UNKNOWN PARAMETERS; UNMIXING;

EID: 72349090162     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SSP.2009.5278494     Document Type: Conference Paper
Times cited : (5)

References (11)
  • 2
    • 0000385570 scopus 로고    scopus 로고
    • Fast autonomous spectral end-member determination in hyperspectral data
    • Vancouver, April
    • M. E. Winter, "Fast autonomous spectral end-member determination in hyperspectral data," in Proc. 13th Int. Conf. on Applied Geologic Remote Sensing, vol. 2, Vancouver, April 1999, pp. 337-344.
    • (1999) Proc. 13th Int. Conf. on Applied Geologic Remote Sensing , vol.2 , pp. 337-344
    • Winter, M.E.1
  • 3
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • April
    • J. M. Nascimento and J. M. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. and Remote Sensing, vol. 43, no. 4, pp. 898-910, April 2005.
    • (2005) IEEE Trans. Geosci. and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.1    Bioucas-Dias, J.M.2
  • 5
    • 0030189048 scopus 로고    scopus 로고
    • On the relationship between spectral unmixing and subspace projection
    • July
    • J. Settle, "On the relationship between spectral unmixing and subspace projection," IEEE Trans. Geosci. and Remote Sensing, vol. 34, no. 4, pp. 1045-1046, July 1996.
    • (1996) IEEE Trans. Geosci. and Remote Sensing , vol.34 , Issue.4 , pp. 1045-1046
    • Settle, J.1
  • 6
    • 0035392132 scopus 로고    scopus 로고
    • Hyperspectral subpixel target detection using the linear mixing model
    • July
    • D. Manolakis, C. Siracusa, and G. Shaw, "Hyperspectral subpixel target detection using the linear mixing model," IEEE Trans. Geosci. and Remote Sensing, vol. 39, no. 7, pp. 1392-1409, July 2001.
    • (2001) IEEE Trans. Geosci. and Remote Sensing , vol.39 , Issue.7 , pp. 1392-1409
    • Manolakis, D.1    Siracusa, C.2    Shaw, G.3
  • 7
    • 46749145829 scopus 로고    scopus 로고
    • Semi-supervised linear spectral using a hierarchical bayesian model for hyperspectral imagery
    • July
    • N. Dobigeon, J.-Y. Tourneret, and C.-I Chang, "Semi-supervised linear spectral using a hierarchical bayesian model for hyperspectral imagery," IEEE Trans. Signal Processing, vol. 56, no. 7, pp. 2684-2696, July 2008.
    • (2008) IEEE Trans. Signal Processing , vol.56 , Issue.7 , pp. 2684-2696
    • Dobigeon, N.1    Tourneret, J.-Y.2    Chang, C.-I.3
  • 9
    • 0002241603 scopus 로고    scopus 로고
    • Stochastic EM: Method and application
    • W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Eds. London: Chapman & Hall
    • J. Diebolt and E. H. S. Ip., "Stochastic EM: method and application," in Markov Chain Monte Carlo in Practice, W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Eds. London: Chapman & Hall, 1996.
    • (1996) Markov Chain Monte Carlo in Practice
    • Diebolt, J.1    Ip, E.H.S.2
  • 10
    • 0036504268 scopus 로고    scopus 로고
    • Bayesian curve fitting using MCMC with applications to signal segmentation
    • March
    • E. Punskaya, C. Andrieu, A. Doucet, and W. Fitzgerald, "Bayesian curve fitting using MCMC with applications to signal segmentation," IEEE Trans. Signal Processing, vol. 50, no. 3, pp. 747-758, March 2002.
    • (2002) IEEE Trans. Signal Processing , vol.50 , Issue.3 , pp. 747-758
    • Punskaya, E.1    Andrieu, C.2    Doucet, A.3    Fitzgerald, W.4
  • 11
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • March
    • D. C. Heinz and C.-I Chang, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Trans. Geosci. and Remote Sensing, vol. 39, no. 3, pp. 529-545, March 2001.
    • (2001) IEEE Trans. Geosci. and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.