메뉴 건너뛰기




Volumn 80, Issue 5, 2009, Pages

Transient spatiotemporal chaos is extensive in three reaction-diffusion networks

Author keywords

[No Author keywords available]

Indexed keywords

CHAOTIC SADDLES; LYAPUNOV DIMENSION; LYAPUNOV EXPONENT; REACTION DIFFUSION; SPACE FILLING; SPATIOTEMPORAL CHAOS; STABLE MANIFOLD; SYSTEM BEHAVIORS; SYSTEM SIZE; SYSTEMATIC STUDY; UNSTABLE MANIFOLD;

EID: 71849112758     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.80.056211     Document Type: Article
Times cited : (10)

References (39)
  • 1
    • 71849091229 scopus 로고
    • 10.1209/0295-5075/31/5-6/002
    • A. Wacker, S. Bose, and E. Schöll, EPL 31, 257 (1995). 10.1209/0295-5075/31/5-6/002
    • (1995) EPL , vol.31 , pp. 257
    • Wacker, A.1    Bose, S.2    Schöll, E.3
  • 5
    • 0000667536 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.53.6562
    • R. Braun and F. Feudel, Phys. Rev. E 53, 6562 (1996). 10.1103/PhysRevE.53.6562
    • (1996) Phys. Rev. e , vol.53 , pp. 6562
    • Braun, R.1    Feudel, F.2
  • 6
    • 26344436389 scopus 로고
    • 10.1103/PhysRevE.47.1419
    • F. H. Willeboordse, Phys. Rev. E 47, 1419 (1993). 10.1103/PhysRevE.47. 1419
    • (1993) Phys. Rev. e , vol.47 , pp. 1419
    • Willeboordse, F.H.1
  • 10
    • 0000038026 scopus 로고
    • 10.1007/BF01218566
    • D. Ruelle, Commun. Math. Phys. 87, 287 (1982). 10.1007/BF01218566
    • (1982) Commun. Math. Phys. , vol.87 , pp. 287
    • Ruelle, D.1
  • 13
    • 33144477407 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.96.054103
    • M. P. Fishman and D. A. Egolf, Phys. Rev. Lett. 96, 054103 (2006). 10.1103/PhysRevLett.96.054103
    • (2006) Phys. Rev. Lett. , vol.96 , pp. 054103
    • Fishman, M.P.1    Egolf, D.A.2
  • 14
    • 41349088356 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.66.017205
    • S. Tajima and H. S. Greenside, Phys. Rev. E 66, 017205 (2002). 10.1103/PhysRevE.66.017205
    • (2002) Phys. Rev. e , vol.66 , pp. 017205
    • Tajima, S.1    Greenside, H.S.2
  • 16
    • 71849087286 scopus 로고    scopus 로고
    • The Erwin Schrödinger International Institute for Mathematical Physics, Vienna
    • S. Ruffo, Lyapunov Spectra in Spatially Extended Systems (The Erwin Schrödinger International Institute for Mathematical Physics, Vienna, 1997)
    • (1997) Lyapunov Spectra in Spatially Extended Systems
    • Ruffo, S.1
  • 18
    • 42649110388 scopus 로고    scopus 로고
    • 10.1016/j.physrep.2008.01.001
    • T. Tél and Y. C. Lai, Phys. Rep. 460, 245 (2008). 10.1016/j.physrep.2008.01.001
    • (2008) Phys. Rep. , vol.460 , pp. 245
    • Tél, T.1    Lai, Y.C.2
  • 19
    • 36048944694 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.76.056207
    • R. Wackerbauer, Phys. Rev. E 76, 056207 (2007). 10.1103/PhysRevE.76. 056207
    • (2007) Phys. Rev. e , vol.76 , pp. 056207
    • Wackerbauer, R.1
  • 20
  • 22
    • 0021310291 scopus 로고
    • 10.1016/0009-2509(84)87017-7
    • P. Gray and S. K. Scott, Chem. Eng. Sci. 39, 1087 (1984). 10.1016/0009-2509(84)87017-7
    • (1984) Chem. Eng. Sci. , vol.39 , pp. 1087
    • Gray, P.1    Scott, S.K.2
  • 23
    • 35949005330 scopus 로고
    • 10.1103/PhysRevE.48.R1635
    • M. Bär and M. Eiswirth, Phys. Rev. E 48, R1635 (1993). 10.1103/PhysRevE.48.R1635
    • (1993) Phys. Rev. e , vol.48 , pp. 1635
    • Bär, M.1    Eiswirth, M.2
  • 27
    • 0000682430 scopus 로고    scopus 로고
    • 10.1016/S0167-2789(97)00164-4
    • M. Meixner, S. Bose, and E. Schöll, Physica D 109, 128 (1997). 10.1016/S0167-2789(97)00164-4
    • (1997) Physica D , vol.109 , pp. 128
    • Meixner, M.1    Bose, S.2    Schöll, E.3
  • 28
    • 71849089290 scopus 로고    scopus 로고
    • The temporal period dt and the spatial period di were defined as x (i+ di, t+ dt) =x (i,t). A two-dimensional autocorrelation analysis for the patterns in Figs. c,d,e yields a temporal period of dt =712.0 and di =0.0 for (c), dt =702.2 and di =-7.4 for (d), and dt =969.8 and di =-24.5 for (e). In comparison the period of the limit cycle for the uncoupled WS system is dt =257.6.
    • The temporal period dt and the spatial period di were defined as x (i+ di, t+ dt) =x (i,t). A two-dimensional autocorrelation analysis for the patterns in Figs.c,d,e yields a temporal period of dt =712.0 and di =0.0 for (c), dt =702.2 and di =-7.4 for (d), and dt =969.8 and di =-24.5 for (e). In comparison the period of the limit cycle for the uncoupled WS system is dt =257.6.
  • 30
    • 71849118885 scopus 로고    scopus 로고
    • This method determines the lifetime with sufficient accuracy, assuming that the maximum Lyapunov exponent is positive on average during the chaotic transient dynamics and zero on average during the nonchaotic dynamics, which is the case when the attractor is not a fixed point. All simulations for the Wacker-Schöll system fulfilled this criterion.
    • This method determines the lifetime with sufficient accuracy, assuming that the maximum Lyapunov exponent is positive on average during the chaotic transient dynamics and zero on average during the nonchaotic dynamics, which is the case when the attractor is not a fixed point. All simulations for the Wacker-Schöll system fulfilled this criterion.
  • 31
    • 33644525608 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.73.026218
    • S. Yonker and R. Wackerbauer, Phys. Rev. E 73, 026218 (2006). 10.1103/PhysRevE.73.026218
    • (2006) Phys. Rev. e , vol.73 , pp. 026218
    • Yonker, S.1    Wackerbauer, R.2
  • 32
    • 71849099197 scopus 로고    scopus 로고
    • In the Gray-Scott system the probability for local extinction could be associated with the probability P of a unit to be conducive to collapse. Test simulations show that no-flux boundary conditions as well as shortcuts in the network change locally the probability for local extinctions.
    • In the Gray-Scott system the probability for local extinction could be associated with the probability P of a unit to be conducive to collapse. Test simulations show that no-flux boundary conditions as well as shortcuts in the network change locally the probability for local extinctions.
  • 33
    • 71849096251 scopus 로고    scopus 로고
    • Transient spatiotemporal chaos can become asymptotic for a constant boundary condition that provides a superthreshold perturbation to the excitable reaction-diffusion network.
    • Transient spatiotemporal chaos can become asymptotic for a constant boundary condition that provides a superthreshold perturbation to the excitable reaction-diffusion network.
  • 35
    • 71849088295 scopus 로고    scopus 로고
    • Computation of Lyapunov exponents can be sensitive to integration time step and time between renormalizations. One representative system for each of the three models (Gray-Scott, Bär-Eiswirth, and Wacker-Schöll) was run with an integration time step five times smaller and then with a renormalization interval five times shorter. In all cases the difference in either Lyapunov dimension or sum of positive Lyapunov exponents between the trial and the baseline cases was less than 1.8 times the estimated convergence error.
    • Computation of Lyapunov exponents can be sensitive to integration time step and time between renormalizations. One representative system for each of the three models (Gray-Scott, Bär-Eiswirth, and Wacker-Schöll) was run with an integration time step five times smaller and then with a renormalization interval five times shorter. In all cases the difference in either Lyapunov dimension or sum of positive Lyapunov exponents between the trial and the baseline cases was less than 1.8 times the estimated convergence error.
  • 36
    • 71849108427 scopus 로고    scopus 로고
    • Runs that survived for a time less than 5× 106 Δt were discarded under the assumption that not enough data would be available to get a reliable value for the Lyapunov exponents. Additionally, each system is run to time 10000Δt before perturbation vectors are followed to minimize the significance of the initial period before the chaotic saddle has been reached, and the perturbation vector data gathered in the first 4500 time units were discarded in order to allow the vectors to align in a natural way.
    • Runs that survived for a time less than 5× 106 Δt were discarded under the assumption that not enough data would be available to get a reliable value for the Lyapunov exponents. Additionally, each system is run to time 10000Δt before perturbation vectors are followed to minimize the significance of the initial period before the chaotic saddle has been reached, and the perturbation vector data gathered in the first 4500 time units were discarded in order to allow the vectors to align in a natural way.
  • 37
    • 0003582543 scopus 로고    scopus 로고
    • Cambridge University Press, Cambridge, England
    • E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, England, 2002).
    • (2002) Chaos in Dynamical Systems
    • Ott, E.1
  • 39
    • 0010842818 scopus 로고
    • Directions in Chaos Vol. edited by B.-L. Hao (World Scientific, Singapore
    • T. Tel, in Transient Chaos, Directions in Chaos Vol. 3, edited by, B.-L. Hao, (World Scientific, Singapore, 1990).
    • (1990) Transient Chaos , vol.3
    • Tel, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.