메뉴 건너뛰기




Volumn 68, Issue 11, 2009, Pages 1271-1288

Text document clustering based on neighbors

Author keywords

Bisecting k means; Document clustering; k means; Performance analysis; Text mining

Indexed keywords

CATEGORICAL ATTRIBUTES; CLUSTER CENTROIDS; CLUSTERING PROBLEMS; COSINE FUNCTIONS; CRITERION FUNCTIONS; DATA MINING TECHNIQUES; DOCUMENT CLUSTERING; EXECUTION TIME; GLOBAL INFORMATIONS; HEURISTIC FUNCTIONS; K CLUSTER; K-MEANS; K-MEANS ALGORITHM; OPTIMIZATION PROCESS; PARTITIONAL CLUSTERING ALGORITHM; PERFORMANCE ANALYSIS; REAL LIFE DATASETS; ROBUST CLUSTERING; SIMILARITY MEASURE; TEXT DOCUMENT; TEXT MINING; TOPIC DISCOVERY;

EID: 71749120353     PISSN: 0169023X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.datak.2009.06.007     Document Type: Article
Times cited : (104)

References (36)
  • 2
    • 0001225295 scopus 로고    scopus 로고
    • Approximation algorithms for min-sum p-clustering
    • Guttman-Beck N., and Hassin R. Approximation algorithms for min-sum p-clustering. Discrete Applied Mathematics 89 (1998) 125-142
    • (1998) Discrete Applied Mathematics , vol.89 , pp. 125-142
    • Guttman-Beck, N.1    Hassin, R.2
  • 5
    • 71749093346 scopus 로고    scopus 로고
    • Classic Text Database, .
    • Classic Text Database, .
  • 8
    • 0022012617 scopus 로고
    • A simple heuristic for the p-center problem
    • Dyer M.E., and Frieze A.M. A simple heuristic for the p-center problem. Operations Research Letters 3 (1985) 285-288
    • (1985) Operations Research Letters , vol.3 , pp. 285-288
    • Dyer, M.E.1    Frieze, A.M.2
  • 9
    • 40349086675 scopus 로고    scopus 로고
    • Finding topics in collections of documents: a shared nearest neighbor approach
    • Wu W., Xiong H., and Shekhar S. (Eds), Kluwer Academic Publishers
    • Ertöz L., Steinbach M., and Kumar V. Finding topics in collections of documents: a shared nearest neighbor approach. In: Wu W., Xiong H., and Shekhar S. (Eds). Clustering and Information Retrieval (2004), Kluwer Academic Publishers 83-104
    • (2004) Clustering and Information Retrieval , pp. 83-104
    • Ertöz, L.1    Steinbach, M.2    Kumar, V.3
  • 13
    • 0018183618 scopus 로고
    • Agglomerative clustering using the concept of mutual nearest neighborhood
    • Gowda K.C., and Krishna G. Agglomerative clustering using the concept of mutual nearest neighborhood. Pattern Recognition 10 2 (1978) 105-112
    • (1978) Pattern Recognition , vol.10 , Issue.2 , pp. 105-112
    • Gowda, K.C.1    Krishna, G.2
  • 14
    • 0034228041 scopus 로고    scopus 로고
    • ROCK: a robust clustering algorithm for categorical attributes
    • Guha S., Rastogi R., and Shim K. ROCK: a robust clustering algorithm for categorical attributes. Information Systems 25 5 (2000) 345-366
    • (2000) Information Systems , vol.25 , Issue.5 , pp. 345-366
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 18
    • 0022064511 scopus 로고
    • A best possible approximation algorithm for the k-center problem
    • Hochbaum D.S., and Shmoys D.B. A best possible approximation algorithm for the k-center problem. Mathematics of Operations Research 10 2 (1985) 180-184
    • (1985) Mathematics of Operations Research , vol.10 , Issue.2 , pp. 180-184
    • Hochbaum, D.S.1    Shmoys, D.B.2
  • 22
    • 0015680655 scopus 로고
    • Clustering using a similarity measure based on shared near neighbors
    • Jarvis R.A., and Patrick E.A. Clustering using a similarity measure based on shared near neighbors. IEEE Transactions on Computers C-22 11 (1973) 1025-1034
    • (1973) IEEE Transactions on Computers , vol.C-22 , Issue.11 , pp. 1025-1034
    • Jarvis, R.A.1    Patrick, E.A.2
  • 26
    • 33845488742 scopus 로고    scopus 로고
    • Parallel bisecting k-means with prediction clustering algorithm
    • Li Y., and Chung S.M. Parallel bisecting k-means with prediction clustering algorithm. The Journal of Supercomputing 39 1 (2007) 19-37
    • (2007) The Journal of Supercomputing , vol.39 , Issue.1 , pp. 19-37
    • Li, Y.1    Chung, S.M.2
  • 27
    • 36049012687 scopus 로고    scopus 로고
    • Text document clustering based on frequent word meaning sequences
    • Li Y., Chung S.M., and Holt J.D. Text document clustering based on frequent word meaning sequences. Data and Knowledge Engineering 64 1 (2008) 381-404
    • (2008) Data and Knowledge Engineering , vol.64 , Issue.1 , pp. 381-404
    • Li, Y.1    Chung, S.M.2    Holt, J.D.3
  • 33
    • 50149104151 scopus 로고    scopus 로고
    • A novel document clustering model based on latent semantic analysis
    • Knowledge and Grid
    • W. Song, S.C. Park, A novel document clustering model based on latent semantic analysis, in: Proc. of the Third Int'l Conf. on Semantics, Knowledge and Grid, 2007, pp. 539-542.
    • (2007) Proc. of the Third Int'l Conf. on Semantics , pp. 539-542
    • Song, W.1    Park, S.C.2
  • 35
    • 38149030678 scopus 로고    scopus 로고
    • Comparing and combing dimension reduction techniques for efficient test clustering, in: Proc. of the Workshop on Feature Selection for Data Mining - Interfacing Machine Learning and Statistics
    • B. Tang, M. Shepherd, E. Milios, M.I. Heywood, Comparing and combing dimension reduction techniques for efficient test clustering, in: Proc. of the Workshop on Feature Selection for Data Mining - Interfacing Machine Learning and Statistics, in Conjunction with the SIAM Int'l Conf. on Data Mining, 2005.
    • (2005) Conjunction with the SIAM Int'l Conf. on Data Mining
    • Tang, B.1    Shepherd, M.2    Milios, E.3    Heywood, M.I.4
  • 36
    • 3543085722 scopus 로고    scopus 로고
    • Empirical and theoretical comparisons of selected criterion functions for document clustering
    • Zhao Y., and Karypis G. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning 55 3 (2004) 311-331
    • (2004) Machine Learning , vol.55 , Issue.3 , pp. 311-331
    • Zhao, Y.1    Karypis, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.