메뉴 건너뛰기




Volumn 31, Issue 2, 2010, Pages 151-162

Selecting features of linear-chain conditional random fields via greedy stage-wise algorithms

Author keywords

Feature selection; Greedy stage wise; Linear chain conditional random fields; Pseudo likelihood

Indexed keywords

CONDITIONAL RANDOM FIELD; EVALUATION CRITERIA; FEATURE SELECTION; FEATURE SELECTION ALGORITHM; GREEDY STAGE-WISE; LOG LIKELIHOOD; PSEUDO-LIKELIHOOD; REAL-WORLD PROBLEM; SMALL FEATURES; TESTING TIME; TIME EFFICIENCIES;

EID: 71549124016     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2009.09.025     Document Type: Article
Times cited : (4)

References (30)
  • 1
    • 0002652285 scopus 로고    scopus 로고
    • A maximum entropy approach to natural language processing
    • Berger A.L., Pietra S.A.D., et al. A maximum entropy approach to natural language processing. Comput. Linguist. 22 1 (1996) 39-71
    • (1996) Comput. Linguist. , vol.22 , Issue.1 , pp. 39-71
    • Berger, A.L.1    Pietra, S.A.D.2
  • 2
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A.L. Selection of relevant features and examples in machine learning. Artif. Intell. 97 (1997) 245-271
    • (1997) Artif. Intell. , vol.97 , pp. 245-271
    • Blum, A.L.1
  • 4
    • 34548386861 scopus 로고    scopus 로고
    • Gene Prediction with Conditional Random Fields
    • Technical Report, University of Massachusetts
    • Culotta, A., Kulp, D., et al., 2005. Gene Prediction with Conditional Random Fields. Technical Report, University of Massachusetts.
    • (2005)
    • Culotta, A.1    Kulp, D.2
  • 5
    • 0010739663 scopus 로고    scopus 로고
    • Filters, wrappers and a boosting-based hybrid for feature selection
    • Das, S., 2001. Filters, wrappers and a boosting-based hybrid for feature selection. In: Proc. 18th Internat. Conf. on Machine Learning, pp. 74-81.
    • (2001) Proc. 18th Internat. Conf. on Machine Learning , pp. 74-81
    • Das, S.1
  • 9
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., and Elisseeff A. An introduction to variable and feature selection. J. Machine Learn. Res. 3 (2003) 1157-1182
    • (2003) J. Machine Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 10
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., and John G.H. Wrappers for feature subset selection. Artif. Intell. 97 (1997) 273-324
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 11
    • 0344120654 scopus 로고    scopus 로고
    • Discriminative random fields: A discriminative framework for contextual
    • Kumar, S., Hebert, M., 2003. Discriminative random fields: A discriminative framework for contextual. In: Proc. 9th IEEE Internat. Conf. on Computer Vision, vol. 2, pp. 1150-1157.
    • (2003) Proc. 9th IEEE Internat. Conf. on Computer Vision , vol.2 , pp. 1150-1157
    • Kumar, S.1    Hebert, M.2
  • 12
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • Lafferty, J.D., McCallum, A., et al., 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. 18th Internat. Conf. on Machine Learning, pp. 282-289.
    • (2001) Proc. 18th Internat. Conf. on Machine Learning , pp. 282-289
    • Lafferty, J.D.1    McCallum, A.2
  • 13
    • 33646709406 scopus 로고    scopus 로고
    • Segmenting brain tumors with conditional random fields and support vector machines
    • Lee C., Schmidt M., et al. Segmenting brain tumors with conditional random fields and support vector machines. Lect. Notes Comput. Sci. 3765 (2005) 469-478
    • (2005) Lect. Notes Comput. Sci. , vol.3765 , pp. 469-478
    • Lee, C.1    Schmidt, M.2
  • 15
    • 0000747663 scopus 로고    scopus 로고
    • Maximum entropy Markov models for information extraction and segmentation
    • Mccallum, A., Freitag, D., et al., 2000. Maximum entropy Markov models for information extraction and segmentation. In: Proc. 17th Internat. Conf. on Machine Learning, pp. 591-598.
    • (2000) Proc. 17th Internat. Conf. on Machine Learning , pp. 591-598
    • Mccallum, A.1    Freitag, D.2
  • 17
  • 18
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77 2 (1989) 257-286
    • (1989) Proc. IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 19
    • 84898962087 scopus 로고    scopus 로고
    • Semi-Markov conditional random fields for information extraction
    • Sarawagi S., and Cohen W.W. Semi-Markov conditional random fields for information extraction. Adv. Neural Inform. Process. Syst. 18 (2005) 1185-1192
    • (2005) Adv. Neural Inform. Process. Syst. , vol.18 , pp. 1185-1192
    • Sarawagi, S.1    Cohen, W.W.2
  • 22
    • 33750032384 scopus 로고    scopus 로고
    • An introduction to conditional random fields for relational learning
    • Getoor L., and Taskar B. (Eds), The MIT Press
    • Sutton C., and McCallum A. An introduction to conditional random fields for relational learning. In: Getoor L., and Taskar B. (Eds). Introduction to Statistical Relational Learning (2007), The MIT Press 93-122
    • (2007) Introduction to Statistical Relational Learning , pp. 93-122
    • Sutton, C.1    McCallum, A.2
  • 23
    • 33947615175 scopus 로고    scopus 로고
    • Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting
    • Sutton C., McCallum A., et al. Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting. J. Machine Learn. Res. 8 (2007) 693-723
    • (2007) J. Machine Learn. Res. , vol.8 , pp. 693-723
    • Sutton, C.1    McCallum, A.2
  • 25
    • 0036643065 scopus 로고    scopus 로고
    • Kernel matching pursuit
    • Vincent P., and Bengio Y. Kernel matching pursuit. Machine Learning 48 (2002) 169-191
    • (2002) Machine Learning , vol.48 , pp. 169-191
    • Vincent, P.1    Bengio, Y.2
  • 28
    • 1942451938 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data: A fast correlation-based filter solution
    • Yu, L., Liu, H., 2003. Feature selection for high-dimensional data: A fast correlation-based filter solution. In: Proc. 20th Internat. Conf. on Machine Learning, pp. 856-863.
    • (2003) Proc. 20th Internat. Conf. on Machine Learning , pp. 856-863
    • Yu, L.1    Liu, H.2
  • 29
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu L., and Liu H. Efficient feature selection via analysis of relevance and redundancy. J. Machine Learn. Res. 5 (2004) 1205-1224
    • (2004) J. Machine Learn. Res. , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 30
    • 31844452562 scopus 로고    scopus 로고
    • 2D conditional random fields for Web information extraction
    • Zhu, J., Nie, Z., et al., 2005. 2D conditional random fields for Web information extraction. In: Proc. 22nd Internat. Conf. on Machine Learning, pp. 1044-1051.
    • (2005) Proc. 22nd Internat. Conf. on Machine Learning , pp. 1044-1051
    • Zhu, J.1    Nie, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.