-
1
-
-
0002652285
-
A maximum entropy approach to natural language processing
-
Berger A.L., Pietra S.A.D., et al. A maximum entropy approach to natural language processing. Comput. Linguist. 22 1 (1996) 39-71
-
(1996)
Comput. Linguist.
, vol.22
, Issue.1
, pp. 39-71
-
-
Berger, A.L.1
Pietra, S.A.D.2
-
2
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
Blum A.L. Selection of relevant features and examples in machine learning. Artif. Intell. 97 (1997) 245-271
-
(1997)
Artif. Intell.
, vol.97
, pp. 245-271
-
-
Blum, A.L.1
-
4
-
-
34548386861
-
Gene Prediction with Conditional Random Fields
-
Technical Report, University of Massachusetts
-
Culotta, A., Kulp, D., et al., 2005. Gene Prediction with Conditional Random Fields. Technical Report, University of Massachusetts.
-
(2005)
-
-
Culotta, A.1
Kulp, D.2
-
5
-
-
0010739663
-
Filters, wrappers and a boosting-based hybrid for feature selection
-
Das, S., 2001. Filters, wrappers and a boosting-based hybrid for feature selection. In: Proc. 18th Internat. Conf. on Machine Learning, pp. 74-81.
-
(2001)
Proc. 18th Internat. Conf. on Machine Learning
, pp. 74-81
-
-
Das, S.1
-
9
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon I., and Elisseeff A. An introduction to variable and feature selection. J. Machine Learn. Res. 3 (2003) 1157-1182
-
(2003)
J. Machine Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
10
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi R., and John G.H. Wrappers for feature subset selection. Artif. Intell. 97 (1997) 273-324
-
(1997)
Artif. Intell.
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
11
-
-
0344120654
-
Discriminative random fields: A discriminative framework for contextual
-
Kumar, S., Hebert, M., 2003. Discriminative random fields: A discriminative framework for contextual. In: Proc. 9th IEEE Internat. Conf. on Computer Vision, vol. 2, pp. 1150-1157.
-
(2003)
Proc. 9th IEEE Internat. Conf. on Computer Vision
, vol.2
, pp. 1150-1157
-
-
Kumar, S.1
Hebert, M.2
-
12
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
Lafferty, J.D., McCallum, A., et al., 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. 18th Internat. Conf. on Machine Learning, pp. 282-289.
-
(2001)
Proc. 18th Internat. Conf. on Machine Learning
, pp. 282-289
-
-
Lafferty, J.D.1
McCallum, A.2
-
13
-
-
33646709406
-
Segmenting brain tumors with conditional random fields and support vector machines
-
Lee C., Schmidt M., et al. Segmenting brain tumors with conditional random fields and support vector machines. Lect. Notes Comput. Sci. 3765 (2005) 469-478
-
(2005)
Lect. Notes Comput. Sci.
, vol.3765
, pp. 469-478
-
-
Lee, C.1
Schmidt, M.2
-
15
-
-
0000747663
-
Maximum entropy Markov models for information extraction and segmentation
-
Mccallum, A., Freitag, D., et al., 2000. Maximum entropy Markov models for information extraction and segmentation. In: Proc. 17th Internat. Conf. on Machine Learning, pp. 591-598.
-
(2000)
Proc. 17th Internat. Conf. on Machine Learning
, pp. 591-598
-
-
Mccallum, A.1
Freitag, D.2
-
16
-
-
33646003948
-
Dynamic conditional random fields for jointly labeling multiple sequences
-
McCallum, A., Rohanimanesh, K., et al., 2003. Dynamic conditional random fields for jointly labeling multiple sequences. In: NIPS03's Workshop on Syntax, Semantics, Statistics.
-
(2003)
NIPS03's Workshop on Syntax, Semantics, Statistics
-
-
McCallum, A.1
Rohanimanesh, K.2
-
18
-
-
0024610919
-
A tutorial on hidden Markov models and selected applications in speech recognition
-
Rabiner L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77 2 (1989) 257-286
-
(1989)
Proc. IEEE
, vol.77
, Issue.2
, pp. 257-286
-
-
Rabiner, L.R.1
-
19
-
-
84898962087
-
Semi-Markov conditional random fields for information extraction
-
Sarawagi S., and Cohen W.W. Semi-Markov conditional random fields for information extraction. Adv. Neural Inform. Process. Syst. 18 (2005) 1185-1192
-
(2005)
Adv. Neural Inform. Process. Syst.
, vol.18
, pp. 1185-1192
-
-
Sarawagi, S.1
Cohen, W.W.2
-
21
-
-
85043116988
-
Shallow parsing with conditional random fields
-
Sha, F., Pereira, F., 2003. Shallow parsing with conditional random fields. In: Proc. 2003 Conf. on North American Chapter of the Association for Computational Linguistics on Human Language Technology, vol. 1, pp. 134-141.
-
(2003)
Proc. 2003 Conf. on North American Chapter of the Association for Computational Linguistics on Human Language Technology
, vol.1
, pp. 134-141
-
-
Sha, F.1
Pereira, F.2
-
22
-
-
33750032384
-
An introduction to conditional random fields for relational learning
-
Getoor L., and Taskar B. (Eds), The MIT Press
-
Sutton C., and McCallum A. An introduction to conditional random fields for relational learning. In: Getoor L., and Taskar B. (Eds). Introduction to Statistical Relational Learning (2007), The MIT Press 93-122
-
(2007)
Introduction to Statistical Relational Learning
, pp. 93-122
-
-
Sutton, C.1
McCallum, A.2
-
23
-
-
33947615175
-
Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting
-
Sutton C., McCallum A., et al. Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting. J. Machine Learn. Res. 8 (2007) 693-723
-
(2007)
J. Machine Learn. Res.
, vol.8
, pp. 693-723
-
-
Sutton, C.1
McCallum, A.2
-
28
-
-
1942451938
-
Feature selection for high-dimensional data: A fast correlation-based filter solution
-
Yu, L., Liu, H., 2003. Feature selection for high-dimensional data: A fast correlation-based filter solution. In: Proc. 20th Internat. Conf. on Machine Learning, pp. 856-863.
-
(2003)
Proc. 20th Internat. Conf. on Machine Learning
, pp. 856-863
-
-
Yu, L.1
Liu, H.2
-
29
-
-
25144492516
-
Efficient feature selection via analysis of relevance and redundancy
-
Yu L., and Liu H. Efficient feature selection via analysis of relevance and redundancy. J. Machine Learn. Res. 5 (2004) 1205-1224
-
(2004)
J. Machine Learn. Res.
, vol.5
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
-
30
-
-
31844452562
-
2D conditional random fields for Web information extraction
-
Zhu, J., Nie, Z., et al., 2005. 2D conditional random fields for Web information extraction. In: Proc. 22nd Internat. Conf. on Machine Learning, pp. 1044-1051.
-
(2005)
Proc. 22nd Internat. Conf. on Machine Learning
, pp. 1044-1051
-
-
Zhu, J.1
Nie, Z.2
|