메뉴 건너뛰기




Volumn 37, Issue 4, 2010, Pages 3088-3093

A qualitative comparison of Artificial Neural Networks and Support Vector Machines in ECG arrhythmias classification

Author keywords

ANN; ECG; SVM

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BACKPROPAGATION LEARNING ALGORITHM; DATA SETS; ECG SIGNALS; GENERALIZATION ABILITY; MULTI-LAYERED; PATTERN CLASSIFIER; PERCEPTRON; STRUCTURAL COMPARISON; SVM(SUPPORT VECTOR MACHINE); TRAINING AND TESTING;

EID: 71349087690     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2009.09.021     Document Type: Article
Times cited : (138)

References (22)
  • 2
    • 33644765907 scopus 로고    scopus 로고
    • A support vector machine classifier algorithm based on perturbation method and its application to ECG beat recognition systems
    • Acir N. A support vector machine classifier algorithm based on perturbation method and its application to ECG beat recognition systems. Expert Systems with Applications 31 (2006) 150-158
    • (2006) Expert Systems with Applications , vol.31 , pp. 150-158
    • Acir, N.1
  • 3
    • 33846438201 scopus 로고    scopus 로고
    • Comparison of FCM, PCA and WT techniques for classification ECG arrhythmias using artificial neural network
    • Ceylan R., and Ozbay Y. Comparison of FCM, PCA and WT techniques for classification ECG arrhythmias using artificial neural network. Expert Systems with Applications 33 (2007) 286-295
    • (2007) Expert Systems with Applications , vol.33 , pp. 286-295
    • Ceylan, R.1    Ozbay, Y.2
  • 4
    • 58349091028 scopus 로고    scopus 로고
    • A novel approach for classification of ECG arrhythmias: Type-2 fuzzy clustering neural network
    • Ceylan R., Ozbay Y., and Karlik B. A novel approach for classification of ECG arrhythmias: Type-2 fuzzy clustering neural network. Expert Systems with Applications 36 (2009) 6721-6726
    • (2009) Expert Systems with Applications , vol.36 , pp. 6721-6726
    • Ceylan, R.1    Ozbay, Y.2    Karlik, B.3
  • 6
    • 5644259871 scopus 로고    scopus 로고
    • ECG beat classification using neuro-fuzzy network
    • Engin M. ECG beat classification using neuro-fuzzy network. Pattern Recognition Letters 25 (2004) 1715-1722
    • (2004) Pattern Recognition Letters , vol.25 , pp. 1715-1722
    • Engin, M.1
  • 7
    • 33644995117 scopus 로고    scopus 로고
    • The comparison of different feed forward neural network architectures for ECG signal diagnosis
    • Gholam Hosseini H., Luo D., and Reynolds K.J. The comparison of different feed forward neural network architectures for ECG signal diagnosis. Medical Engineering and Physics 28 (2006) 372-378
    • (2006) Medical Engineering and Physics , vol.28 , pp. 372-378
    • Gholam Hosseini, H.1    Luo, D.2    Reynolds, K.J.3
  • 8
    • 28844479643 scopus 로고    scopus 로고
    • A modified mixture of experts network structure for ECG beats classification with diverse features
    • Guler I., and Ubeyli E. A modified mixture of experts network structure for ECG beats classification with diverse features. Engineering Applications of Artificial Intelligence 18 (2005) 845-856
    • (2005) Engineering Applications of Artificial Intelligence , vol.18 , pp. 845-856
    • Guler, I.1    Ubeyli, E.2
  • 9
    • 6444240833 scopus 로고    scopus 로고
    • ECG beat classifier designed by combined neural network mode
    • Guler I., and Ubeyli E. ECG beat classifier designed by combined neural network mode. Pattern Recognition 38 (2005) 199-208
    • (2005) Pattern Recognition , vol.38 , pp. 199-208
    • Guler, I.1    Ubeyli, E.2
  • 11
    • 71349085154 scopus 로고    scopus 로고
    • MIT-BIH Arrhythmia Database
    • MIT-BIH Arrhythmia Database, .
  • 12
    • 50049126632 scopus 로고    scopus 로고
    • Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal
    • Mohammadzadeh Asl B., Setarehdan S.K., and Mohebbi M. Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artificial Intelligence in Medicine 44 (2008) 51-64
    • (2008) Artificial Intelligence in Medicine , vol.44 , pp. 51-64
    • Mohammadzadeh Asl, B.1    Setarehdan, S.K.2    Mohebbi, M.3
  • 13
    • 43749102493 scopus 로고    scopus 로고
    • Recognition and classification system of arrhythmia using ensemble of neural networks
    • Osowski S., Markiewicz T., and Tran Hoai L. Recognition and classification system of arrhythmia using ensemble of neural networks. Measurement 41 (2008) 610-617
    • (2008) Measurement , vol.41 , pp. 610-617
    • Osowski, S.1    Markiewicz, T.2    Tran Hoai, L.3
  • 14
    • 32644482767 scopus 로고    scopus 로고
    • A fuzzy clustering neural network architecture for classification of ECG arrhythmias
    • Özbay Y., Ceylan R., and Karlik B. A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Computers in Biology and Medicine 36 (2006) 376-388
    • (2006) Computers in Biology and Medicine , vol.36 , pp. 376-388
    • Özbay, Y.1    Ceylan, R.2    Karlik, B.3
  • 15
    • 36549070691 scopus 로고    scopus 로고
    • Computer aided diagnosis of ECG data on the least square support vector machine
    • Polat K., Akdemir B., and Güneş S. Computer aided diagnosis of ECG data on the least square support vector machine. Digital Signal Processing 18 (2008) 25-32
    • (2008) Digital Signal Processing , vol.18 , pp. 25-32
    • Polat, K.1    Akdemir, B.2    Güneş, S.3
  • 16
    • 33947248058 scopus 로고    scopus 로고
    • Detection of ECG Arrhythmia using a differential expert system approach based on principal component analysis and least square support vector machine
    • Polat K., and Gunes S. Detection of ECG Arrhythmia using a differential expert system approach based on principal component analysis and least square support vector machine. Applied Mathematics and Computing 186 (2007) 898-906
    • (2007) Applied Mathematics and Computing , vol.186 , pp. 898-906
    • Polat, K.1    Gunes, S.2
  • 17
    • 54049114256 scopus 로고    scopus 로고
    • Support vector machines for detection of electrocardiographic changes in partial epileptic patients
    • Ubeyli E. Support vector machines for detection of electrocardiographic changes in partial epileptic patients. Engineering Applications of Artificial Intelligence 21 (2008) 1196-1203
    • (2008) Engineering Applications of Artificial Intelligence , vol.21 , pp. 1196-1203
    • Ubeyli, E.1
  • 18
    • 34047269242 scopus 로고    scopus 로고
    • ECG beats classification using multiclass support vector machines with error correcting output codes
    • Ubeyli E. ECG beats classification using multiclass support vector machines with error correcting output codes. Digital Signal Processing 17 (2007) 675-684
    • (2007) Digital Signal Processing , vol.17 , pp. 675-684
    • Ubeyli, E.1
  • 19
    • 34248190653 scopus 로고    scopus 로고
    • Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network
    • Yu S., and Chen Y. Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network. Pattern Recognition Letters 28 (2007) 1142-1150
    • (2007) Pattern Recognition Letters , vol.28 , pp. 1142-1150
    • Yu, S.1    Chen, Y.2
  • 20
    • 33947654328 scopus 로고    scopus 로고
    • A switchable scheme for ECG beat classification based on independent component analysis
    • Yu S., and Chou K. A switchable scheme for ECG beat classification based on independent component analysis. Expert Systems with Applications 33 (2007) 824-829
    • (2007) Expert Systems with Applications , vol.33 , pp. 824-829
    • Yu, S.1    Chou, K.2
  • 21
    • 56349170342 scopus 로고    scopus 로고
    • Selection of significant independent components for ECG beat classification
    • Yu S., and Chou K. Selection of significant independent components for ECG beat classification. Expert Systems with Applications 36 (2009) 2088-2096
    • (2009) Expert Systems with Applications , vol.36 , pp. 2088-2096
    • Yu, S.1    Chou, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.