메뉴 건너뛰기




Volumn 8, Issue 4, 2004, Pages 735-777

The notion of observable in the covariant Hamiltonian formalism for the calculus of variations with several variables

Author keywords

[No Author keywords available]

Indexed keywords


EID: 71249136975     PISSN: 10950761     EISSN: 10950753     Source Type: Journal    
DOI: 10.4310/ATMP.2004.v8.n4.a4     Document Type: Article
Times cited : (38)

References (31)
  • 4
    • 0042429109 scopus 로고    scopus 로고
    • Some remarks on Lagrangian and Poisson reduction for field Theories
    • M. Castrillon opez and J.E. Marsden, Some remarks on Lagrangian and Poisson reduction for field Theories, J. Geom. Phys. 48 (2003), 52-83.
    • (2003) J. Geom. Phys. , vol.48 , pp. 52-83
    • Castrillon opez, M.1    Marsden, J.E.2
  • 7
    • 0000233462 scopus 로고
    • On the generalization of symplectic geometry to multiple integrals in the calculus of variations
    • eds. K. Bleuler and A. Reetz, Lect. Notes Maths. Springer-Verlag, Berlin
    • P. Dedecker, On the generalization of symplectic geometry to multiple integrals in the calculus of variations, in 'Differential Geometrical Methods in Mathematical Physics', eds. K. Bleuler and A. Reetz, Lect. Notes Maths., 570, Springer-Verlag, Berlin, 1977, 395-456.
    • (1977) Differential Geometrical Methods in Mathematical Physics , vol.570 , pp. 395-456
    • Dedecker, P.1
  • 8
    • 0000401284 scopus 로고    scopus 로고
    • A Poisson bracket on multisymplectic phase space
    • M. Forger and H. Römer, A Poisson bracket on multisymplectic phase space, Rep. Math. Phys. 48 (2001), 211-218.
    • (2001) Rep. Math. Phys , vol.48 , pp. 211-218
    • Forger, M.1    Römer, H.2
  • 10
    • 0000026189 scopus 로고
    • On the generalization of the canonical formalism in the classical field theory
    • K. Gawe{ogonek}dski, On the generalization of the canonical formalism in the classical field theory, Rep. Math. Phys. 4(3) (1972), 307-326.
    • (1972) Rep. Math. Phys. , vol.4 , Issue.3 , pp. 307-326
    • Gawedski, K.1
  • 12
    • 0000082862 scopus 로고
    • The Hamilton-Cartan formalism in the calculus of variations
    • H. Goldschmidt and S. Sternberg, The Hamilton-Cartan formalism in the calculus of variations, Ann. Inst. Fourier Grenoble 23(1) (1973), 203-267.
    • (1973) Ann. Inst. Fourier Grenoble , vol.23 , Issue.1 , pp. 203-267
    • Goldschmidt, H.1    Sternberg, S.2
  • 14
    • 33750151324 scopus 로고    scopus 로고
    • Hamiltonian formalisms for multidimensional calculus of variations and perturbation theory
    • F. Hélein, Hamiltonian formalisms for multidimensional calculus of variations and perturbation theory, Contemporary Math. 350 (2004), 127-147.
    • (2004) Contemporary Math , vol.350 , pp. 127-147
    • Hélein, F.1
  • 15
    • 0035981799 scopus 로고    scopus 로고
    • Finite dimensional Hamiltonian formalism for gauge and quantum field theory
    • F. Hélein and J. Kouneiher, Finite dimensional Hamiltonian formalism for gauge and quantum field theory, J. Math. Physics 43(5) (2002).
    • (2002) J. Math. Physics , vol.43 , Issue.5
    • Hélein, F.1    Kouneiher, J.2
  • 17
    • 79551474926 scopus 로고    scopus 로고
    • Covariant Hamiltonian formalisms for the calculus of variations with several variables: Lepage-Dedecker versus de Donder-Weyl
    • F. Hélein and J. Kouneiher, Covariant Hamiltonian formalisms for the calculus of variations with several variables: Lepage-Dedecker versus de Donder-Weyl, Adv. Theor. Math. Phys. 8 (2004), 575-611.
    • (2004) Adv. Theor. Math. Phys , vol.8 , pp. 575-611
    • Hélein, F.1    Kouneiher, J.2
  • 22
    • 0031993512 scopus 로고    scopus 로고
    • Canonical structure of classical field theory in the polymomentum phase space
    • I.V. Kanatchikov, Canonical structure of classical field theory in the polymomentum phase space, Rep. Math. Phys. 41(1) (1998).
    • (1998) Rep. Math. Phys. , vol.41 , Issue.1
    • Kanatchikov, I.V.1
  • 24
    • 0001837631 scopus 로고
    • A finite dimensional canonical formalism in the classical field theory
    • J. Kijowski, A finite dimensional canonical formalism in the classical field theory, Comm. Math. Phys. 30 (1973), 99-128.
    • (1973) Comm. Math. Phys. , vol.30 , pp. 99-128
    • Kijowski, J.1
  • 25
    • 0000247184 scopus 로고
    • A canonical structure for classical field theories
    • J. Kijowski and W. Szczyrba, A canonical structure for classical field theories, Comm. Math. Phys. 46 (1976), 183-206.
    • (1976) Comm. Math. Phys. , vol.46 , pp. 183-206
    • Kijowski, J.1    Szczyrba, W.2
  • 31
    • 0001376821 scopus 로고
    • Geodesic fields in the calculus of variation for multiple integrals
    • H. Weyl, Geodesic fields in the calculus of variation for multiple integrals, Ann. Math. 6 (1935), 607-629.
    • (1935) Ann. Math. , vol.6 , pp. 607-629
    • Weyl, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.