-
2
-
-
0004290111
-
-
Springer-Verlag, MSRI
-
R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmidt and P.A. Griffiths, Exterior differential systems, Springer-Verlag, MSRI, 18, 1991.
-
(1991)
Exterior differential systems
, vol.18
-
-
Bryant, R.L.1
Chern, S.S.2
Gardner, R.B.3
Goldschmidt, H.L.4
Griffiths, P.A.5
-
4
-
-
0042429109
-
Some remarks on Lagrangian and Poisson reduction for field Theories
-
M. Castrillon opez and J.E. Marsden, Some remarks on Lagrangian and Poisson reduction for field Theories, J. Geom. Phys. 48 (2003), 52-83.
-
(2003)
J. Geom. Phys.
, vol.48
, pp. 52-83
-
-
Castrillon opez, M.1
Marsden, J.E.2
-
6
-
-
79551491110
-
-
'Géométrie différentielle', Colloq. Intern. du CNRS LII, Strasbourg 1953, Publ. du CNRS, Paris
-
P. Dedecker, Calcul des variations, formes différentielles et champs géodésiques, in 'Géométrie différentielle', Colloq. Intern. du CNRS LII, Strasbourg 1953, Publ. du CNRS, Paris, 1953, 17-34.
-
(1953)
Calcul des variations, formes différentielles et champs géodésiques
, pp. 17-34
-
-
Dedecker, P.1
-
7
-
-
0000233462
-
On the generalization of symplectic geometry to multiple integrals in the calculus of variations
-
eds. K. Bleuler and A. Reetz, Lect. Notes Maths. Springer-Verlag, Berlin
-
P. Dedecker, On the generalization of symplectic geometry to multiple integrals in the calculus of variations, in 'Differential Geometrical Methods in Mathematical Physics', eds. K. Bleuler and A. Reetz, Lect. Notes Maths., 570, Springer-Verlag, Berlin, 1977, 395-456.
-
(1977)
Differential Geometrical Methods in Mathematical Physics
, vol.570
, pp. 395-456
-
-
Dedecker, P.1
-
8
-
-
0000401284
-
A Poisson bracket on multisymplectic phase space
-
M. Forger and H. Römer, A Poisson bracket on multisymplectic phase space, Rep. Math. Phys. 48 (2001), 211-218.
-
(2001)
Rep. Math. Phys
, vol.48
, pp. 211-218
-
-
Forger, M.1
Römer, H.2
-
10
-
-
0000026189
-
On the generalization of the canonical formalism in the classical field theory
-
K. Gawe{ogonek}dski, On the generalization of the canonical formalism in the classical field theory, Rep. Math. Phys. 4(3) (1972), 307-326.
-
(1972)
Rep. Math. Phys.
, vol.4
, Issue.3
, pp. 307-326
-
-
Gawedski, K.1
-
11
-
-
0003912908
-
-
(with the collaboraton of R. Montgomery, J. Śnyatycki, P.B. Yasskin), preprint
-
M.J. Gotay, J. Isenberg and J.E. Marsden (with the collaboraton of R. Montgomery, J. Śnyatycki, P.B. Yasskin), Momentum maps and classical relativistic fields, Part I: covariant field theory, preprint.
-
Momentum maps and classical relativistic fields, Part I: covariant field theory
-
-
Gotay, M.J.1
Isenberg, J.2
Marsden, J.E.3
-
12
-
-
0000082862
-
The Hamilton-Cartan formalism in the calculus of variations
-
H. Goldschmidt and S. Sternberg, The Hamilton-Cartan formalism in the calculus of variations, Ann. Inst. Fourier Grenoble 23(1) (1973), 203-267.
-
(1973)
Ann. Inst. Fourier Grenoble
, vol.23
, Issue.1
, pp. 203-267
-
-
Goldschmidt, H.1
Sternberg, S.2
-
14
-
-
33750151324
-
Hamiltonian formalisms for multidimensional calculus of variations and perturbation theory
-
F. Hélein, Hamiltonian formalisms for multidimensional calculus of variations and perturbation theory, Contemporary Math. 350 (2004), 127-147.
-
(2004)
Contemporary Math
, vol.350
, pp. 127-147
-
-
Hélein, F.1
-
15
-
-
0035981799
-
Finite dimensional Hamiltonian formalism for gauge and quantum field theory
-
F. Hélein and J. Kouneiher, Finite dimensional Hamiltonian formalism for gauge and quantum field theory, J. Math. Physics 43(5) (2002).
-
(2002)
J. Math. Physics
, vol.43
, Issue.5
-
-
Hélein, F.1
Kouneiher, J.2
-
17
-
-
79551474926
-
Covariant Hamiltonian formalisms for the calculus of variations with several variables: Lepage-Dedecker versus de Donder-Weyl
-
F. Hélein and J. Kouneiher, Covariant Hamiltonian formalisms for the calculus of variations with several variables: Lepage-Dedecker versus de Donder-Weyl, Adv. Theor. Math. Phys. 8 (2004), 575-611.
-
(2004)
Adv. Theor. Math. Phys
, vol.8
, pp. 575-611
-
-
Hélein, F.1
Kouneiher, J.2
-
22
-
-
0031993512
-
Canonical structure of classical field theory in the polymomentum phase space
-
I.V. Kanatchikov, Canonical structure of classical field theory in the polymomentum phase space, Rep. Math. Phys. 41(1) (1998).
-
(1998)
Rep. Math. Phys.
, vol.41
, Issue.1
-
-
Kanatchikov, I.V.1
-
24
-
-
0001837631
-
A finite dimensional canonical formalism in the classical field theory
-
J. Kijowski, A finite dimensional canonical formalism in the classical field theory, Comm. Math. Phys. 30 (1973), 99-128.
-
(1973)
Comm. Math. Phys.
, vol.30
, pp. 99-128
-
-
Kijowski, J.1
-
25
-
-
0000247184
-
A canonical structure for classical field theories
-
J. Kijowski and W. Szczyrba, A canonical structure for classical field theories, Comm. Math. Phys. 46 (1976), 183-206.
-
(1976)
Comm. Math. Phys.
, vol.46
, pp. 183-206
-
-
Kijowski, J.1
Szczyrba, W.2
-
30
-
-
0000478109
-
The graded Lie algebra of multivector fields and the generalized Lie derivative of forms
-
W.M. Tulczyjew, The graded Lie algebra of multivector fields and the generalized Lie derivative of forms, Bull. de l'Acad. Polon. des Sci., Série sci. Math., Astr. et Phys. XXII (1974), 937-942.
-
(1974)
Bull. de l'Acad. Polon. des Sci., Série sci. Math., Astr. et Phys.
, vol.22
, pp. 937-942
-
-
Tulczyjew, W.M.1
-
31
-
-
0001376821
-
Geodesic fields in the calculus of variation for multiple integrals
-
H. Weyl, Geodesic fields in the calculus of variation for multiple integrals, Ann. Math. 6 (1935), 607-629.
-
(1935)
Ann. Math.
, vol.6
, pp. 607-629
-
-
Weyl, H.1
|