-
1
-
-
36849095249
-
Data streams: Models and algorithms
-
Aggarwal, C.C. (ed.) Springer, Heidelberg
-
Aggarwal, C.C. (ed.): Data Streams: Models and Algorithms, Advances in Database Systems. Springer, Heidelberg (2007)
-
(2007)
Advances in Database Systems
-
-
-
2
-
-
85012236181
-
A Framework for clustering evolving data streams
-
Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A Framework for clustering Evolving Data Streams. In: VLDB 2003: Proc. of the 29th in Very Large Data Bases conf (2003)
-
(2003)
VLDB 2003: Proc. of the 29th in Very Large Data Bases Conf
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
4
-
-
0038205905
-
Requirements for clustering data streams
-
Barbaŕa, D.: Requirements for clustering data streams. SIGKDD Explor. Newsl. 3(2), 23-27 (2002)
-
(2002)
SIGKDD Explor. Newsl.
, vol.3
, Issue.2
, pp. 23-27
-
-
Barbaŕa, D.1
-
5
-
-
2542567719
-
Semi-supervised clustering by Seeding
-
Basu, S., Banerjee, A., Mooney, R.J.: Semi-supervised clustering by Seeding. In: ICML 2002: Proc. Int. Conf. on Machine Learning, pp. 19-26 (2002)
-
(2002)
ICML 2002: Proc. Int. Conf. on Machine Learning
, pp. 19-26
-
-
Basu, S.1
Banerjee, A.2
Mooney, R.J.3
-
6
-
-
12244300524
-
A Probabilistic framework for semi- supervised clustering
-
Basu, S., Bilenko, M., Mooney, R.J.: A Probabilistic Framework for Semi- Supervised clustering. In: KDD 2004: Proc. of 10th Int. Conf. on Knowledge Discovery in Databases and Data Mining, pp. 59-68 (2004)
-
(2004)
KDD 2004: Proc. of 10th Int. Conf. on Knowledge Discovery in Databases and Data Mining
, pp. 59-68
-
-
Basu, S.1
Bilenko, M.2
Mooney, R.J.3
-
7
-
-
14344264451
-
Integrating constraints and metric learning in semisupervised clustering
-
Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and Metric Learning in Semisupervised clustering. In: ICML 2004: Proc. of the 21th Int. Conf. on Machine Learning, pp. 11-19 (2004)
-
(2004)
ICML 2004: Proc. of the 21th Int. Conf. on Machine Learning
, pp. 11-19
-
-
Bilenko, M.1
Basu, S.2
Mooney, R.J.3
-
8
-
-
33745434639
-
Density-based clustering over an evolving data stream with noise
-
Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: SIAM 2006: SIAM Int. Conf. on Data Mining (2006)
-
(2006)
SIAM 2006: SIAM Int. Conf. on Data Mining
-
-
Cao, F.1
Ester, M.2
Qian, W.3
Zhou, A.4
-
9
-
-
49049097165
-
Stream data management
-
Chaudhry, N., Shaw, K., Abdelguerfi, M. (eds.) Springer, Heidelberg
-
Chaudhry, N., Shaw, K., Abdelguerfi, M. (eds.): Stream Data Management, Advances in Database Systems. Springer, Heidelberg (2005)
-
(2005)
Advances in Database Systems
-
-
-
12
-
-
33750288047
-
Measuring constraint-set utility for partitional clustering algorithms
-
Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.). PKDD 2006. Springer, Heidelberg
-
Davidson, I., Wagstaff, K.L., Basu, S.: Measuring constraint-Set Utility for Partitional clustering Algorithms. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol.4213, pp. 115-126. Springer, Heidelberg (2006)
-
(2006)
LNCS (LNAI)
, vol.4213
, pp. 115-126
-
-
Davidson, I.1
Wagstaff, K.L.2
Basu, S.3
-
14
-
-
0002815587
-
A General Method for scaling up machine learning algorithms and its application to clustering
-
San Francisco, CA, USA. Morgan Kaufmann Publishers Inc., San Francisco
-
Domingos, P., Hulten, G.: A General Method for Scaling Up Machine Learning Algorithms and its Application to clustering. In: ICML 2001: Proc. of the 18th Int. Conf. on Machine Learning, San Francisco, CA, USA, pp. 106-113. Morgan Kaufmann Publishers Inc., San Francisco (2001)
-
(2001)
ICML 2001: Proc. of the 18th Int. Conf. on Machine Learning
, pp. 106-113
-
-
Domingos, P.1
Hulten, G.2
-
16
-
-
0000550189
-
A Density-based algortihm for discovering clusters in large spatial database with noise
-
Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A Density-Based Algortihm for Discovering clusters in Large Spatial Database with Noise. In: KDD 1996: Proc. of 2nd Int. Conf. on Knowledge Discovery in Databases and Data Mining (1996)
-
(1996)
KDD 1996: Proc. of 2nd Int. Conf. on Knowledge Discovery in Databases and Data Mining
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
17
-
-
27144514705
-
Ubiquitous data stream mining
-
2004
-
Gaber, M., Krishnaswamy, S., Zaslavsky, A.: Ubiquitous Data Stream Mining. In: Proc. of the current Research and Future Directions Workshop in PAKDD 2004, pp. 37 - 46 (2004)
-
(2004)
Proc. of the Current Research and Future Directions Workshop in PAKDD
, pp. 37-46
-
-
Gaber, M.1
Krishnaswamy, S.2
Zaslavsky, A.3
-
18
-
-
26944494130
-
An incremental data stream clustering algorithm based on dense units detection
-
Gao, J., Li, J., Zhang, Z., Tan, P.-N.: An Incremental Data Stream clustering Algorithm Based on Dense Units Detection. In: Proc. of the current Research and Future Directions Workshop held in PAKDD 2005, pp. 420-425 (2005)
-
(2005)
Proc. of the Current Research and Future Directions Workshop Held in PAKDD 2005
, pp. 420-425
-
-
Gao, J.1
Li, J.2
Zhang, Z.3
Tan, P.-N.4
-
19
-
-
0038633423
-
Clustering data streams: Theory and practice
-
Guha, S., Meyerson, A., Mishra, N., Motwani, R., O'callaghan, L.: clustering Data Streams: Theory and Practice. IEEE Transactions on Knowledge and Data Engineering 15(3), 515-528 (2003)
-
(2003)
IEEE Transactions on Knowledge and Data Engineering
, vol.15
, Issue.3
, pp. 515-528
-
-
Guha, S.1
Meyerson, A.2
Mishra, N.3
Motwani, R.4
O'Callaghan, L.5
-
21
-
-
34548564268
-
A framework for semi-supervised learning based on subjective and objective clustering criteria
-
Halkidi, M., Gunopulos, D., Kumar, N., Vazirgiannis, M., Domeniconi, C.: A Framework for Semi-Supervised Learning Based on Subjective and Objective clustering criteria. In: ICDM 2005: Proc. of the 5th IEEE Int. Conf. on Data Mining, pp. 637-640 (2005)
-
(2005)
ICDM 2005: Proc. of the 5th IEEE Int. Conf. on Data Mining
, pp. 637-640
-
-
Halkidi, M.1
Gunopulos, D.2
Kumar, N.3
Vazirgiannis, M.4
Domeniconi, C.5
-
22
-
-
9444294778
-
From instance-level constraints to spacelevel constraints: Making the most of prior knowledge in data clustering
-
Klein, D., Kamvar, S.D., Manning, C.: From instance-level constraints to spacelevel constraints: making the most of prior knowledge in data clustering. In: ICML 2002: Proc. of the 19th Int. Conf. on Machine Learning, pp. 307-314 (2002)
-
(2002)
ICML 2002: Proc. of the 19th Int. Conf. on Machine Learning
, pp. 307-314
-
-
Klein, D.1
Kamvar, S.D.2
Manning, C.3
-
24
-
-
57949115516
-
TECNO-STreams: Tracking evolving clusters in noisy data streams with a scalable immune system learning model
-
Washington, DC, USA, IEEE computer Society Press, Los Alamitos
-
Nasraoui, O., Uribe, C.C., coronel, C.R., Gonzalez, F.: TECNO-STREAMS: Tracking Evolving Clusters in Noisy Data Streams with a Scalable Immune System Learning Model. In: ICDM 2003: Proc. of the 3rd IEEE Int. Conf. on Data Mining, Washington, DC, USA, p. 235. IEEE computer Society Press, Los Alamitos (2003)
-
(2003)
ICDM 2003: Proc. of the 3rd IEEE Int. Conf. on Data Mining
, pp. 235
-
-
Nasraoui, O.1
Uribe, C.C.2
Coronel, C.R.3
Gonzalez, F.4
-
26
-
-
84950632109
-
Objective criteria for the evalluation of clustering methods
-
Rand,W.M.: Objective criteria for the Evalluation of clustering Methods. Journal of the American Statistical Association 66, 846-850 (1971)
-
(1971)
Journal of the American Statistical Association
, vol.66
, pp. 846-850
-
-
Rand, W.M.1
-
27
-
-
58149262155
-
C-DBSCAN: Density-based clustering with constraints
-
Ruiz, C., Spiliopoulou, M., Menasalvas, E.: C-DBSCAN: Density-Based clustering with constraints. In: RSFDGrc 2007: Proc. of the Int. Conf. on Rough Sets, Fuzzy Sets, Data Mining and Granular computing (2007)
-
(2007)
RSFDGrc 2007: Proc. of the Int. Conf. on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing
-
-
Ruiz, C.1
Spiliopoulou, M.2
Menasalvas, E.3
-
28
-
-
0000924888
-
Cost-based modeling and evaluation for data mining with application to fraud and intrusion detection: Results from the JAM project
-
Stolfo, S.J., Fan, W., Lee, W., Prodromidis, A., chan, P.K.: cost-based Modeling and Evaluation for Data Mining With Application to Fraud and Intrusion Detection: Results from the JAM Project. Technical report, U. of columbia (1998)
-
(1998)
Technical Report, U. of Columbia
-
-
Stolfo, S.J.1
Fan, W.2
Lee, W.3
Prodromidis, A.4
Chan, P.K.5
-
29
-
-
0042377235
-
Constrained K-means clustering with background knowledge
-
Wagstaff, K., cardie, C., Rogers, S., Schroedl, S.: constrained K-means clustering with Background Knowledge. In: ICML 2001: Proc. of 18th Int. Conf. on Machine Learning, pp. 577-584 (2001)
-
(2001)
ICML 2001: Proc. of 18th Int. Conf. on Machine Learning
, pp. 577-584
-
-
Wagstaff, K.1
Cardie, C.2
Rogers, S.3
Schroedl, S.4
-
30
-
-
84879571292
-
Distance metric learning, with application to clustering with side-information
-
Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance Metric Learning, with Application to clustering with Side-Information. Advances in Neural Information Processing Systems 15, 505-512 (2003)
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 505-512
-
-
Xing, E.P.1
Ng, A.Y.2
Jordan, M.I.3
Russell, S.4
|