메뉴 건너뛰기




Volumn 2, Issue 2, 2008, Pages 736-755

Quantitative magnetic resonance image analysis via the EM algorithm with stochastic variation

Author keywords

EM algorithm; Hidden Markov random field; Missing data; Model selection; Quantitative MRI; Stochastic variation

Indexed keywords


EID: 70749108824     PISSN: 19326157     EISSN: 19417330     Source Type: Journal    
DOI: 10.1214/07-AOAS157     Document Type: Article
Times cited : (7)

References (43)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Akadémiai Kiadó, Budapest
    • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In, Second International Symposium on Information Theory (Tsahkasdor, 1971) 267-281. Akadémiai Kiadó, Budapest.
    • (1973) Second International Symposium On Information Theory (Tsahkasdor, 1971) , pp. 267-281
    • Akaike, H.1
  • 2
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems (with discussion)
    • Mathematical Reviews (MathSciNet): MR373208 JSTOR: links.jstor.org
    • Besag, J. E. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion)., J. Roy. Statist. Soc. Ser. B 36 192-236. Mathematical Reviews (MathSciNet): MR373208 JSTOR: links.jstor.org
    • (1974) J. Roy. Statist. Soc. Ser. B , vol.36 , pp. 192-236
    • Besag, J.E.1
  • 3
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • Mathematical Reviews (MathSciNet): MR876840 JSTOR: links.jstor.org
    • Besag, J. E. (1986). On the statistical analysis of dirty pictures., J. Roy. Statist. Soc. Ser. B 48 259-302. Mathematical Reviews (MathSciNet): MR876840 JSTOR: links.jstor.org
    • (1986) J. Roy. Statist. Soc. Ser. B , vol.48 , pp. 259-302
    • Besag, J.E.1
  • 4
    • 0030613470 scopus 로고    scopus 로고
    • Model selection: An integral part of inference
    • Buckland, S. T., Burnham, K. P. and Augustin, N. H. (1997). Model selection: An integral part of inference., Biometrics 53 603-618.
    • (1997) Biometrics , vol.53 , pp. 603-618
    • Buckland, S.T.1    Burnham, K.P.2    Augustin, N.H.3
  • 6
    • 23044502688 scopus 로고    scopus 로고
    • Use of magnetic resonance imaging to assess blood-brain/blood-glioma barrier opening during conformal radiotherapy
    • Cao, Y., Tsien, C. I., Shen, Z., Tatro, D. S., Ten Haken, R., Kessler, M. L., Chenevert, T. L. and Lawrence, T. S. (2005). Use of magnetic resonance imaging to assess blood-brain/blood-glioma barrier opening during conformal radiotherapy., J. Clinical Oncology 23 4127-4136.
    • (2005) J. Clinical Oncology , vol.23 , pp. 4127-4136
    • Cao, Y.1    Tsien, C.I.2    Shen, Z.3    Tatro, D.S.4    Ten, H.R.5    Kessler, M.L.6    Chenevert, T.L.7    Lawrence, T.S.8
  • 7
    • 13844251687 scopus 로고    scopus 로고
    • Springer, New York, Mathematical Reviews (MathSciNet): MR2159833 Zentralblatt MATH: 1080.62065
    • Cappe, O., Moulines, E. and Ryden, T. (2005)., Inference in Hidden Markov Models. Springer, New York. Mathematical Reviews (MathSciNet): MR2159833 Zentralblatt MATH: 1080.62065
    • (2005) Inference In Hidden Markov Models
    • Cappe, O.1    Moulines, E.2    Ryden, T.3
  • 8
    • 0002241694 scopus 로고
    • The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem
    • Celeux, G. and Diebolt, J. (1985). The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem., Comput. Statist. Quarterly 2 73-82.
    • (1985) Comput. Statist. Quarterly , vol.2 , pp. 73-82
    • Celeux, G.1    Diebolt, J.2
  • 9
    • 0024855884 scopus 로고
    • An iterative Gibbsian technique for reconstruction of, M-ary images
    • Chalmond, B. (1989). An iterative Gibbsian technique for reconstruction of, M-ary images. Pattern Recognition 22 747-761.
    • (1989) Pattern Recognition , vol.22 , pp. 747-761
    • Chalmond, B.1
  • 10
    • 1142265325 scopus 로고    scopus 로고
    • The focused information criterion (with discussion)
    • Mathematical Reviews (MathSciNet): MR2041482 Zentralblatt MATH: 1045.62003 Digital Object Identifier: doi:10.1198/016214503000000819
    • Claeskens, G. and Hjort, N. L. (2003). The focused information criterion (with discussion)., J. Amer. Statist. Assoc. 98 900-945. Mathematical Reviews (MathSciNet): MR2041482 Zentralblatt MATH: 1045.62003 Digital Object Identifier: doi:10.1198/016214503000000819
    • (2003) J. Amer. Statist. Assoc , vol.98 , pp. 900-945
    • Claeskens, G.1    Hjort, N.L.2
  • 11
    • 0033243858 scopus 로고    scopus 로고
    • Convergence of a stochastic approximation version of the EM algorithm
    • Mathematical Reviews (MathSciNet): MR1701103 Zentralblatt MATH: 0932.62094 Digital Object Identifier: doi:10.1214/aos/1018031103 Project Euclid: euclid.aos/1018031103
    • Delyon, B., Lavielle, M. and Moulines, E. (1999). Convergence of a stochastic approximation version of the EM algorithm., Ann. Statist. 27 94-128. Mathematical Reviews (MathSciNet): MR1701103 Zentralblatt MATH: 0932.62094 Digital Object Identifier: doi:10.1214/aos/1018031103 Project Euclid: euclid.aos/1018031103
    • (1999) Ann. Statist , vol.27 , pp. 94-128
    • Delyon, B.1    Lavielle, M.2    Moulines, E.3
  • 12
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Mathematical Reviews (MathSciNet): MR501537 JSTOR: links.jstor.org
    • Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm., J. Roy. Statist. Soc. Ser. B 39 1-38. Mathematical Reviews (MathSciNet): MR501537 JSTOR: links.jstor.org
    • (1977) J. Roy. Statist. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 14
    • 0032211488 scopus 로고    scopus 로고
    • fMRI signal restoration using a spatio-temporal Markov random field preserving transitions
    • Descombes, X., Kruggel, F. and von Cramon, D. Y. (1998b). fMRI signal restoration using a spatio-temporal Markov random field preserving transitions., NeuroImage 8 340-349.
    • (1998) NeuroImage , vol.8 , pp. 340-349
    • Descombes, X.1    Kruggel, F.2    von Cramon, D.Y.3
  • 15
    • 12344323744 scopus 로고    scopus 로고
    • Unsupervised image segmentation using a simple MRF model with a new implementation scheme
    • Deng, H. and Clausi, D. A. (2004). Unsupervised image segmentation using a simple MRF model with a new implementation scheme., Pattern Recognition 37 2323-2335.
    • (2004) Pattern Recognition , vol.37 , pp. 2323-2335
    • Deng, H.1    Clausi, D.A.2
  • 16
    • 24144441307 scopus 로고    scopus 로고
    • A stochastic method for Bayesian estimation of hidden Markov random field models with application to a color model
    • Mathematical Reviews (MathSciNet): MR2171966 Digital Object Identifier: doi:10.1109/TIP.2005.851710
    • Destrempes, F., Mignotte, M. and Angers, J. F. (2005). A stochastic method for Bayesian estimation of hidden Markov random field models with application to a color model., IEEE Trans. Image Process. 14 1096-1108. Mathematical Reviews (MathSciNet): MR2171966 Digital Object Identifier: doi:10.1109/TIP.2005.851710
    • (2005) IEEE Trans. Image Process , vol.14 , pp. 1096-1108
    • Destrempes, F.1    Mignotte, M.2    Angers, J.F.3
  • 17
    • 0036109418 scopus 로고    scopus 로고
    • Global optimization with exploration/selection algorithms and simulated annealing
    • Mathematical Reviews (MathSciNet): MR1890064 Zentralblatt MATH: 1012.60066 Digital Object Identifier: doi:10.1214/aoap/1015961163 Project Euclid: euclid.aoap/1015961163
    • Francois, O. (2002). Global optimization with exploration/selection algorithms and simulated annealing., Ann. Appl. Probab. 12 248-271. Mathematical Reviews (MathSciNet): MR1890064 Zentralblatt MATH: 1012.60066 Digital Object Identifier: doi:10.1214/aoap/1015961163 Project Euclid: euclid.aoap/1015961163
    • (2002) Ann. Appl. Probab , vol.12 , pp. 248-271
    • Francois, O.1
  • 19
    • 1142277415 scopus 로고    scopus 로고
    • Frequentist model average estimators
    • Mathematical Reviews (MathSciNet): MR2041481 Zentralblatt MATH: 1047.62003 Digital Object Identifier: doi:10.1198/016214503000000828
    • Hjort, N. L. and Claeskens, G. (2003). Frequentist model average estimators., J. Amer. Statist. Assoc. 98 879-899. Mathematical Reviews (MathSciNet): MR2041481 Zentralblatt MATH: 1047.62003 Digital Object Identifier: doi:10.1198/016214503000000828
    • (2003) J. Amer. Statist. Assoc , vol.98 , pp. 879-899
    • Hjort, N.L.1    Claeskens, G.2
  • 20
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Mathematical Reviews (MathSciNet): MR1380810 Zentralblatt MATH: 0861.62023 Digital Object Identifier: doi:10.1093/biomet/82.4.711 JSTOR: links.jstor.org
    • Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination., Biometrica 8 711-732. Mathematical Reviews (MathSciNet): MR1380810 Zentralblatt MATH: 0861.62023 Digital Object Identifier: doi:10.1093/biomet/82.4.711 JSTOR: links.jstor.org
    • (1995) Biometrica , vol.8 , pp. 711-732
    • Green, P.J.1
  • 21
    • 0024715149 scopus 로고
    • Simultaneous parameter estimation and segmentation of Gibbs random fields using simulated annealing
    • Lakshmanan, S. and Derin, H. (1989). Simultaneous parameter estimation and segmentation of Gibbs random fields using simulated annealing., IEEE Trans. Pattern Analysis and Machines Intelligence 2 799-813.
    • (1989) IEEE Trans. Pattern Analysis and Machines Intelligence , vol.2 , pp. 799-813
    • Lakshmanan, S.1    Derin, H.2
  • 22
    • 0000088579 scopus 로고
    • On jointly estimating parameters and missing data by maximizing the complete-data likelihood
    • Little, R. J. A. and Rubin, D. B. (1983). On jointly estimating parameters and missing data by maximizing the complete-data likelihood., American Statistician 37 218-220.
    • (1983) American Statistician , vol.37 , pp. 218-220
    • Little, R.J.A.1    Rubin, D.B.2
  • 23
    • 0036033417 scopus 로고    scopus 로고
    • Statistical properties of X-ray CT and MRI from imaging physics to image statistics
    • Lei, T. and Udupa, J. K. (2002). Statistical properties of X-ray CT and MRI from imaging physics to image statistics., Proceedings of the SPIE, Medical Imaging 4682 82-93.
    • (2002) Proceedings of the SPIE, Medical Imaging , vol.4682 , pp. 82-93
    • Lei, T.1    Udupa, J.K.2
  • 24
    • 0041469708 scopus 로고    scopus 로고
    • Image analysis: Recovering the true scene from noisy images
    • Lei, T. and Udupa, J. K. (2003). Image analysis: Recovering the true scene from noisy images., Proceedings of the SPIE, Image Processing 5032 1719-1727.
    • (2003) Proceedings of the SPIE Image Processing , vol.5032 , pp. 1719-1727
    • Lei, T.1    Udupa, J.K.2
  • 26
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the EM algorithm
    • Mathematical Reviews (MathSciNet): MR676213 JSTOR: links.jstor.org
    • Louis, T. (1982). Finding the observed information matrix when using the EM algorithm., J. Roy. Statist. Soc. Ser. B 44 226-233. Mathematical Reviews (MathSciNet): MR676213 JSTOR: links.jstor.org
    • (1982) J. Roy. Statist. Soc. Ser. B , vol.44 , pp. 226-233
    • Louis, T.1
  • 27
    • 0036475031 scopus 로고    scopus 로고
    • Double Markov random fields and Bayesian image segmentation
    • Mathematical Reviews (MathSciNet): MR1946392 Digital Object Identifier: doi:10.1109/78.978390
    • Melas, D. E. and Wilson, S. P. (2002). Double Markov random fields and Bayesian image segmentation., IEEE Trans. Signal Process. 50 357-365. Mathematical Reviews (MathSciNet): MR1946392 Digital Object Identifier: doi:10.1109/78.978390
    • (2002) IEEE Trans. Signal Process , vol.50 , pp. 357-365
    • Melas, D.E.1    Wilson, S.P.2
  • 30
    • 84926736518 scopus 로고
    • Some generalized order-disorder transformations
    • Mathematical Reviews (MathSciNet): MR47571 Digital Object Identifier: doi:10.1017/S0305004100027419
    • Potts, R. B. (1952). Some generalized order-disorder transformations., Proc. Cambridge Philos. Soc. 48 106-109. Mathematical Reviews (MathSciNet): MR47571 Digital Object Identifier: doi:10.1017/S0305004100027419
    • (1952) Proc. Cambridge Philos. Soc , vol.48 , pp. 106-109
    • Potts, R.B.1
  • 31
    • 0034823448 scopus 로고    scopus 로고
    • Bayesian approach to segmentation of statistical parametric maps
    • Rajapakse, J. C. and Piyaratna, J. (2001). Bayesian approach to segmentation of statistical parametric maps., IEEE Trans. Biomedical Engineering 48 1186-1194.
    • (2001) IEEE Trans. Biomedical Engineering , vol.48 , pp. 1186-1194
    • Rajapakse, J.C.1    Piyaratna, J.2
  • 32
    • 0003738155 scopus 로고
    • Wiley, New York, Mathematical Reviews (MathSciNet): MR899519 Zentralblatt MATH: 1070.62007
    • Rubin, D. B. (1987)., Multiple Imputation for Nonresponse in Sample Surveys. Wiley, New York. Mathematical Reviews (MathSciNet): MR899519 Zentralblatt MATH: 1070.62007
    • (1987) Multiple Imputation For Nonresponse In Sample Surveys
    • Rubin, D.B.1
  • 33
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Mathematical Reviews (MathSciNet): MR468014 Zentralblatt MATH: 0379.62005 Digital Object Identifier: doi:10.1214/aos/1176344136 Project Euclid: euclid.aos/1176344136
    • Schwarz, G. (1978). Estimating the dimension of a model., Ann. Statist. 6 461-464. Mathematical Reviews (MathSciNet): MR468014 Zentralblatt MATH: 0379.62005 Digital Object Identifier: doi:10.1214/aos/1176344136 Project Euclid: euclid.aos/1176344136
    • (1978) Ann. Statist , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 34
    • 33746698314 scopus 로고    scopus 로고
    • Unsupervised image segmentation using Markov random fields
    • Springer, Berlin
    • Sengur, A., Turkoglu, I. and Ince, C. M. (2006). Unsupervised image segmentation using Markov random fields., Lecture Notes in Artificial Intelligence 3949 158-167. Springer, Berlin.
    • (2006) Lecture Notes In Artificial Intelligence , vol.3949 , pp. 158-167
    • Sengur, A.1    Turkoglu, I.2    Ince, C.M.3
  • 36
    • 33747349191 scopus 로고
    • Nonuniversal critical dynamics in Monte Carlo simulations
    • Swendsen, R. H. and Wang, J. S. (1987). Nonuniversal critical dynamics in Monte Carlo simulations., Phys. Rev. Lett. 58 86-88.
    • (1987) Phys. Rev. Lett , vol.58 , pp. 86-88
    • Swendsen, R.H.1    Wang, J.S.2
  • 37
    • 33746609417 scopus 로고    scopus 로고
    • Contextual modeling of function MR images with conditional random fields
    • Wang, Y. and Rajapakse, J. (2006). Contextual modeling of function MR images with conditional random fields., IEEE Trans. Medical Imaging 25 804-812.
    • (2006) IEEE Trans. Medical Imaging , vol.25 , pp. 804-812
    • Wang, Y.1    Rajapakse, J.2
  • 38
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
    • Wei, G. C. G. and Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms., J. Amer. Statist. Assoc. 85 699-704.
    • (1990) J. Amer. Statist. Assoc , vol.85 , pp. 699-704
    • Wei, G.C.G.1    Tanner, M.A.2
  • 39
    • 44049114806 scopus 로고
    • Unsupervised segmentation of noisy and textured images using Markov random fields
    • Won, C. S. and Derin, H. (1992). Unsupervised segmentation of noisy and textured images using Markov random fields., Graphical Models and Image Processing 54 308-328.
    • (1992) Graphical Models and Image Processing , vol.54 , pp. 308-328
    • Won, C.S.1    Derin, H.2
  • 40
    • 11844293467 scopus 로고    scopus 로고
    • Mixture models with adaptive spatial regularization for segmentation with an application to fMRI data
    • Woolrich, M. W., Behrens, T. E., Beckmann, C. F. and Smith, S. M. (2005). Mixture models with adaptive spatial regularization for segmentation with an application to fMRI data., IEEE Trans. Medical Imaging 24 1-11.
    • (2005) IEEE Trans. Medical Imaging , vol.24 , pp. 1-11
    • Woolrich, M.W.1    Behrens, T.E.2    Beckmann, C.F.3    Smith, S.M.4
  • 41
    • 0029096148 scopus 로고
    • Analysis of fMRI time-series revisited-Again
    • Worsley, K. J. and Friston, K. J. (1995). Analysis of fMRI time-series revisited-Again., NeuroImage 2 173-181.
    • (1995) NeuroImage , vol.2 , pp. 173-181
    • Worsley, K.J.1    Friston, K.J.2
  • 42
    • 0028466714 scopus 로고
    • Maximum-likelihood parameter estimation for unsupervised stochastic model-based image segmentation
    • Zhang, J., Modestino, J. W. and Langan, D. A. (1994). Maximum-likelihood parameter estimation for unsupervised stochastic model-based image segmentation., IEEE Trans. Image Process. 3 404-420.
    • (1994) IEEE Trans. Image Process , vol.3 , pp. 404-420
    • Zhang, J.1    Modestino, J.W.2    Langan, D.A.3
  • 43
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
    • Zhang, Y., Brady, M. and Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm., IEEE Trans. Medical Imaging 20 45-57.
    • (2001) IEEE Trans. Medical Imaging , vol.20 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.