-
4
-
-
0141835056
-
-
Zanghellini J., Kitzler M., Fabian C., Brabec T., and Scrinzi A. Laser Phys. 13 (2003) 1064
-
(2003)
Laser Phys.
, vol.13
, pp. 1064
-
-
Zanghellini, J.1
Kitzler, M.2
Fabian, C.3
Brabec, T.4
Scrinzi, A.5
-
10
-
-
18544387288
-
-
Caillat J., Zanghellini J., Kitzler M., Koch O., Kreuzer W., and Scrinzi A. Phys. Rev. A 71 (2005) 012712
-
(2005)
Phys. Rev. A
, vol.71
, pp. 012712
-
-
Caillat, J.1
Zanghellini, J.2
Kitzler, M.3
Koch, O.4
Kreuzer, W.5
Scrinzi, A.6
-
11
-
-
36048972891
-
-
Nguyen-Dang T.T., Peters M., Wang S.-M., Sinelnikov E., and Dion F. J. Chem. Phys. 127 (2007) 174107
-
(2007)
J. Chem. Phys.
, vol.127
, pp. 174107
-
-
Nguyen-Dang, T.T.1
Peters, M.2
Wang, S.-M.3
Sinelnikov, E.4
Dion, F.5
-
12
-
-
19744363260
-
-
Kitzler M., Zanghellini J., Jungreuthmayer Ch., Smits M., Scrinzi A., and Brabec T. Phys. Rev. A 70 (2004) 041401R
-
(2004)
Phys. Rev. A
, vol.70
-
-
Kitzler, M.1
Zanghellini, J.2
Jungreuthmayer, Ch.3
Smits, M.4
Scrinzi, A.5
Brabec, T.6
-
16
-
-
70549087419
-
-
K}, i.e., complete active space expansion. Therefore the relation of Eq. (A1) rigorously holds for our approximate wave function of Eq. (4). Note that the resolution relation is only applicable for the wave function defined at the same time t where the spin-orbitals and/or the Slater determinants are defined.
-
K}, i.e., complete active space expansion. Therefore the relation of Eq. (A1) rigorously holds for our approximate wave function of Eq. (4). Note that the resolution relation is only applicable for the wave function defined at the same time t where the spin-orbitals and/or the Slater determinants are defined.
-
-
-
-
18
-
-
70549085501
-
-
eff (over(r, →), t) for each NSO may be reconstructed by solving the time-dependent Schrödinger equation inversely. However, within the present approach (Eq. (9)), we cannot determine continuous time-dependent phases for the NSOs in general. Note that the phases of the NSOs do not alter the numerical values of the natural orbital energies and natural orbital potentials.
-
eff (over(r, →), t) for each NSO may be reconstructed by solving the time-dependent Schrödinger equation inversely. However, within the present approach (Eq. (9)), we cannot determine continuous time-dependent phases for the NSOs in general. Note that the phases of the NSOs do not alter the numerical values of the natural orbital energies and natural orbital potentials.
-
-
-
-
22
-
-
70549105434
-
-
If we use a smaller grid space for the same number of grid points finer grids, we obtain a lower total energy, e.g, Eg, 1.7820 Eh, and the order of the natural orbital energies becomes 1 σg < 1 σu < 1 πu± < 2 σg < 1 πg± < 3 σg < 2 σu. Although the discrepancies in Eg and the order of the natural orbital energies are brought about, we shall use the grid space defined in the text to describe the amplitude of the wave function that corresponds to the ionization current
-
g and the order of the natural orbital energies are brought about, we shall use the grid space defined in the text to describe the amplitude of the wave function that corresponds to the ionization current.
-
-
-
-
24
-
-
68949203466
-
-
Kato T., Kono H., Kanno M., Fujimura Y., and Yamanouchi K. Laser Phys. 19 (2009) 1712
-
(2009)
Laser Phys.
, vol.19
, pp. 1712
-
-
Kato, T.1
Kono, H.2
Kanno, M.3
Fujimura, Y.4
Yamanouchi, K.5
|