-
1
-
-
4243445702
-
-
10.1103/PhysRevA.53.2046
-
C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Phys. Rev. A 53, 2046 (1996). 10.1103/PhysRevA.53.2046
-
(1996)
Phys. Rev. A
, vol.53
, pp. 2046
-
-
Bennett, C.H.1
Bernstein, H.J.2
Popescu, S.3
Schumacher, B.4
-
2
-
-
4243684526
-
-
10.1103/PhysRevLett.80.2245
-
W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998). 10.1103/PhysRevLett.80. 2245
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 2245
-
-
Wootters, W.K.1
-
3
-
-
4243216277
-
-
10.1103/PhysRevA.54.3824
-
C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 54, 3824 (1996). 10.1103/PhysRevA.54.3824
-
(1996)
Phys. Rev. A
, vol.54
, pp. 3824
-
-
Bennett, C.H.1
Divincenzo, D.P.2
Smolin, J.A.3
Wootters, W.K.4
-
6
-
-
0035908094
-
-
10.1103/PhysRevLett.86.5803
-
G. Vidal and J. I. Cirac, Phys. Rev. Lett. 86, 5803 (2001). 10.1103/PhysRevLett.86.5803
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 5803
-
-
Vidal, G.1
Cirac, J.I.2
-
8
-
-
4043132188
-
-
10.1103/PhysRevA.63.012307
-
C. H. Bennett, S. Popescu, D. Rohrlich, J. A. Smolin, and A. V. Thapliyal, Phys. Rev. A 63, 012307 (2000). 10.1103/PhysRevA.63.012307
-
(2000)
Phys. Rev. A
, vol.63
, pp. 012307
-
-
Bennett, C.H.1
Popescu, S.2
Rohrlich, D.3
Smolin, J.A.4
Thapliyal, A.V.5
-
10
-
-
0036577113
-
-
10.1103/PhysRevA.65.052112
-
F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde, Phys. Rev. A 65, 052112 (2002). 10.1103/PhysRevA.65.052112
-
(2002)
Phys. Rev. A
, vol.65
, pp. 052112
-
-
Verstraete, F.1
Dehaene, J.2
De Moor, B.3
Verschelde, H.4
-
12
-
-
0004048824
-
-
edited by M. Kafatos (Kluwer, Dordrecht
-
D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Bell's Theorem, Quantum Theory, and Conceptions of the Universe, edited by, M. Kafatos, (Kluwer, Dordrecht, 1989).
-
(1989)
Bell's Theorem, Quantum Theory, and Conceptions of the Universe
-
-
Greenberger, D.M.1
Horne, M.A.2
Zeilinger, A.3
-
14
-
-
4444269235
-
-
10.1103/PhysRevLett.78.2275
-
V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett. 78, 2275 (1997). 10.1103/PhysRevLett.78.2275
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 2275
-
-
Vedral, V.1
Plenio, M.B.2
Rippin, M.A.3
Knight, P.L.4
-
15
-
-
0035823437
-
-
10.1088/0305-4470/34/35/325;
-
M. B. Plenio and V. Vedral J. Phys. A 34, 6997 (2001) 10.1088/0305-4470/34/35/325
-
(2001)
J. Phys. A
, vol.34
, pp. 6997
-
-
Plenio, M.B.1
Vedral, V.2
-
16
-
-
4043149344
-
-
T.-C. Wei, M. Ericsson, P. M. Goldbart, and W. J. Munro, Quantum Inf. Comput. 4, 252 (2004).
-
(2004)
Quantum Inf. Comput.
, vol.4
, pp. 252
-
-
Wei, T.-C.1
Ericsson, M.2
Goldbart, P.M.3
Munro, W.J.4
-
17
-
-
0000727092
-
-
10.1103/PhysRevA.58.883
-
K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, Phys. Rev. A 58, 883 (1998). 10.1103/PhysRevA.58.883
-
(1998)
Phys. Rev. A
, vol.58
, pp. 883
-
-
Zyczkowski, K.1
Horodecki, P.2
Sanpera, A.3
Lewenstein, M.4
-
18
-
-
45849155349
-
-
10.1103/PhysRevA.64.030302
-
W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, Phys. Rev. A 64, 030302 (R) (2001). 10.1103/PhysRevA.64.030302
-
(2001)
Phys. Rev. A
, vol.64
, pp. 030302
-
-
Munro, W.J.1
James, D.F.V.2
White, A.G.3
Kwiat, P.G.4
-
20
-
-
0038303067
-
-
10.1103/PhysRevA.67.022110
-
T.-C. Wei, K. Nemoto, P. M. Goldbart, P. G. Kwiat, W. J. Munro, and F. Verstraete, Phys. Rev. A 67, 022110 (2003). 10.1103/PhysRevA.67.022110
-
(2003)
Phys. Rev. A
, vol.67
, pp. 022110
-
-
Wei, T.-C.1
Nemoto, K.2
Goldbart, P.M.3
Kwiat, P.G.4
Munro, W.J.5
Verstraete, F.6
-
21
-
-
4043120596
-
-
10.1103/PhysRevA.68.042307
-
T.-C. Wei and P. M. Goldbart, Phys. Rev. A 68, 042307 (2003). 10.1103/PhysRevA.68.042307
-
(2003)
Phys. Rev. A
, vol.68
, pp. 042307
-
-
Wei, T.-C.1
Goldbart, P.M.2
-
23
-
-
0038284569
-
-
10.1103/PhysRevLett.85.1560
-
A. Acín, A. Andrianov, L. Costa, E. Jané, J. I. Latorre, and R. Tarrach, Phys. Rev. Lett. 85, 1560 (2000). 10.1103/PhysRevLett.85.1560
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 1560
-
-
Acín, A.1
Andrianov, A.2
Costa, L.3
Jané, E.4
Latorre, J.I.5
Tarrach, R.6
-
29
-
-
51149088110
-
-
10.1103/PhysRevA.78.032304
-
L. Tamaryan, D. K. Park, J.-W. Son, and S. Tamaryan, Phys. Rev. A 78, 032304 (2008). 10.1103/PhysRevA.78.032304
-
(2008)
Phys. Rev. A
, vol.78
, pp. 032304
-
-
Tamaryan, L.1
Park, D.K.2
Son, J.-W.3
Tamaryan, S.4
-
31
-
-
70450286494
-
-
These solutions are minimizing the overlap. Stationarity equations do not differ maximums and mimimums and give both extremes. Surprisingly, there is a solution which, depending on state parameters, maximizes the overlap for some states and minimizes for some other states. This solution is presented in Sec..
-
These solutions are minimizing the overlap. Stationarity equations do not differ maximums and mimimums and give both extremes. Surprisingly, there is a solution which, depending on state parameters, maximizes the overlap for some states and minimizes for some other states. This solution is presented in Sec..
-
-
-
-
32
-
-
68549122749
-
-
10.1103/PhysRevA.80.012319
-
P. Parashar and S. Rana, Phys. Rev. A 80, 012319 (2009). 10.1103/PhysRevA.80.012319
-
(2009)
Phys. Rev. A
, vol.80
, pp. 012319
-
-
Parashar, P.1
Rana, S.2
-
33
-
-
70450263806
-
-
Notice that the maximal angle θmax is given by tan θmax =22 and this is the angle between sides of a regular tetrahedron.
-
Notice that the maximal angle θmax is given by tan θmax =22 and this is the angle between sides of a regular tetrahedron.
-
-
-
-
35
-
-
45249113253
-
-
10.1103/PhysRevA.77.062317
-
E. Jung, M. R. Hwang, H. Kim, M. S. Kim, D. K. Park, J. W. Son, and S. Tamaryan, Phys. Rev. A 77, 062317 (2008). 10.1103/PhysRevA.77.062317
-
(2008)
Phys. Rev. A
, vol.77
, pp. 062317
-
-
Jung, E.1
Hwang, M.R.2
Kim, H.3
Kim, M.S.4
Park, D.K.5
Son, J.W.6
Tamaryan, S.7
-
36
-
-
70349436052
-
-
10.1103/PhysRevA.80.032324
-
R. Hübener, M. Kleinmann, T.-C. Wei, C. González- Guillén, and O. Gühne, Phys. Rev. A 80, 032324 (2009). 10.1103/PhysRevA.80.032324
-
(2009)
Phys. Rev. A
, vol.80
, pp. 032324
-
-
Hübener, R.1
Kleinmann, M.2
Wei, T.-C.3
González-Guillén, C.4
Gühne, O.5
-
37
-
-
70450241213
-
-
Notice that when t=0, the phase γ can be further made zero by changing local phases as eiγ can be absorbed in the definition of the product state | 111. It turns out that for 0≤γ≤π/4, the maximal entanglement is achieved when t=0 and GHZ is the only maximally entangled state in this range.
-
Notice that when t=0, the phase γ can be further made zero by changing local phases as eiγ can be absorbed in the definition of the product state | 111. It turns out that for 0≤γ≤π/4, the maximal entanglement is achieved when t=0 and GHZ is the only maximally entangled state in this range.
-
-
-
-
38
-
-
68549127005
-
-
For mixed state, the three-tangle does not properly quantify even some GHZ-type states [10.1103/PhysRevA.80.010301
-
For mixed state, the three-tangle does not properly quantify even some GHZ-type states [E. Jung, D. K. Park and J. W. Son, Phys. Rev. A 80, 010301 (R) (2009)]. 10.1103/PhysRevA.80.010301
-
(2009)
Phys. Rev. A
, vol.80
, pp. 010301
-
-
Jung, E.1
Park, D.K.2
Son, J.W.3
|