-
3
-
-
2142660755
-
-
10.1103/PhysRevB.69.104431
-
M. B. Hastings, Phys. Rev. B 69, 104431 (2004). 10.1103/PhysRevB.69. 104431
-
(2004)
Phys. Rev. B
, vol.69
, pp. 104431
-
-
Hastings, M.B.1
-
4
-
-
33749987043
-
-
10.1103/PhysRevLett.97.157202
-
T. J. Osborne, Phys. Rev. Lett. 97, 157202 (2006). 10.1103/PhysRevLett. 97.157202
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 157202
-
-
Osborne, T.J.1
-
5
-
-
42049103942
-
-
10.1103/PhysRevB.77.144302
-
M. B. Hastings, Phys. Rev. B 77, 144302 (2008). 10.1103/PhysRevB.77. 144302
-
(2008)
Phys. Rev. B
, vol.77
, pp. 144302
-
-
Hastings, M.B.1
-
8
-
-
70450225816
-
-
Ph.D. thesis, UCL, London
-
D. K. Burgarth, Ph.D. thesis, UCL, London, 2006.
-
(2006)
-
-
Burgarth, D.K.1
-
9
-
-
34547416594
-
-
10.1080/00107510701342313
-
S. Bose, Contemp. Phys. 48, 13 (2007). 10.1080/00107510701342313
-
(2007)
Contemp. Phys.
, vol.48
, pp. 13
-
-
Bose, S.1
-
11
-
-
0037458435
-
-
10.1103/PhysRevLett.90.076402;
-
R. Leturcq, D. L'Hôte, R. Tourbot, C. J. Mellor, and M. Henini, Phys. Rev. Lett. 90, 076402 (2003) 10.1103/PhysRevLett.90.076402
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 076402
-
-
Leturcq, R.1
L'Hôte, D.2
Tourbot, R.3
Mellor, C.J.4
Henini, M.5
-
12
-
-
34548726770
-
-
10.1103/PhysRevLett.99.116102
-
P. C. Snijders, E. J. Moon, C. González, S. Rogge, J. Ortega, F. Flores, and H. H. Weitering, Phys. Rev. Lett. 99, 116102 (2007). 10.1103/PhysRevLett.99.116102
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 116102
-
-
Snijders, P.C.1
Moon, E.J.2
González, C.3
Rogge, S.4
Ortega, J.5
Flores, F.6
Weitering, H.H.7
-
16
-
-
70350116888
-
-
10.1007/s00220-009-0873-6
-
A. Harrow and R. Low, Comm. Math. Phys. 291, 257 (2009) 10.1007/s00220-009-0873-6
-
(2009)
Comm. Math. Phys.
, vol.291
, pp. 257
-
-
Harrow, A.1
Low, R.2
-
17
-
-
70450240017
-
-
This can be shown by considering the differential equation in the coefficients of the Pauli operator basis, noting when the only fixed point corresponds to the maximally mixed state. One requires the following: let A be real and antisymmetric and E be a positive matrix, A= [BC - CT D], E= [00 0F]; if both F and C have maximum rank then Re [λj (A-E)] <0 for all j.
-
This can be shown by considering the differential equation in the coefficients of the Pauli operator basis, noting when the only fixed point corresponds to the maximally mixed state. One requires the following: let A be real and antisymmetric and E be a positive matrix, A= [BC - CT D], E= [00 0F]; if both F and C have maximum rank then Re [λj (A-E)] <0 for all j.
-
-
-
-
18
-
-
45149114767
-
-
10.1038/nature07000
-
J. Billy, Nature (London) 453, 891 (2008). 10.1038/nature07000
-
(2008)
Nature (London)
, vol.453
, pp. 891
-
-
Billy, J.1
-
19
-
-
70450240016
-
-
We cannot calculate correlation functions directly for the first model as we do for the second, since our derivation requires the preservation of excitation number; neither can we calculate the Lieb-Robinson commutator for the latter as our calculation relies on the symmetry of the fluctuating fields.
-
We cannot calculate correlation functions directly for the first model as we do for the second, since our derivation requires the preservation of excitation number; neither can we calculate the Lieb-Robinson commutator for the latter as our calculation relies on the symmetry of the fluctuating fields.
-
-
-
-
20
-
-
24244444170
-
-
10.1103/PhysRev.109.1492
-
P. Anderson, Phys. Rev. 109, 1492 (1958). 10.1103/PhysRev.109.1492
-
(1958)
Phys. Rev.
, vol.109
, pp. 1492
-
-
Anderson, P.1
-
21
-
-
38749086110
-
-
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06) (IEEE, Berkeley, CA, 10.1109/FOCS.2006.50
-
H. Buhrmann, in Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06) (IEEE, Berkeley, CA, 2006), pp. 411-419. 10.1109/FOCS.2006.50
-
(2006)
, pp. 411-419
-
-
Buhrmann, H.1
|