메뉴 건너뛰기




Volumn 8, Issue 9, 2009, Pages 1522-1532

An advanced hybrid machine learning approach for assessment of the change of gait symmetry

Author keywords

Gait analysis; Gait classification; Gait symmetry; Kernel principal component analysis; Kinetic gait data; Support vector machine

Indexed keywords

BASIC IDEA; BINARY CLASSIFICATION; CLASSIFICATION MODELS; CLASSIFICATION PERFORMANCE; CLINICAL DIAGNOSTICS; DATA SUPPORT; EFFECTIVE TOOL; FORCE PLATFORM; FUNCTIONAL CHANGES; GAIT CLASSIFICATION; GAIT FUNCTIONS; GAIT SYMMETRY; GENERALIZATION PERFORMANCE; GROUND FORCES; HUMAN GAIT; HUMAN LOWER EXTREMITY; HYBRID MACHINE LEARNING; HYBRID MODEL; KERNEL PRINCIPAL COMPONENT ANALYSIS; LOWER LIMB; NON-LINEAR DYNAMICS; NORMAL WALKING; POLYNOMIAL KERNELS; PRINCIPAL COMPONENTS; QUANTITATIVE ASSESSMENTS; RIGHT AND LEFT; STRAIN GAUGE; TEST RESULTS; TRAINING SETS;

EID: 70450235397     PISSN: 11092750     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (1)

References (21)
  • 1
    • 0034282046 scopus 로고    scopus 로고
    • Gait symmetry and limb dominance in able-bodied gait
    • H. Sadeghi, P. Allard, F.Prince and H. Labelle, Gait symmetry and limb dominance in able-bodied gait, Gait and Posture, Vol.12, No.1, 2001, pp. 34-45.
    • (2001) Gait and Posture , vol.12 , Issue.1 , pp. 34-45
    • Sadeghi, H.1    Allard, P.2    Prince, F.3    Labelle, H.4
  • 3
    • 0037612448 scopus 로고    scopus 로고
    • Local or global asymmetry in gait of people without impairments
    • H. Sadeghi, Local or global asymmetry in gait of people without impairments, Gait and Posture, Vol.17, 2003, pp.197-204.
    • (2003) Gait and Posture , vol.17 , pp. 197-204
    • Sadeghi, H.1
  • 4
    • 0035143369 scopus 로고    scopus 로고
    • A review of analytical techniques for gait data. Part 1: Fuzzy, statistical and fractal methods
    • DOI 10.1016/S0966-6362(00)00094-1, PII S0966636200000941
    • T.Chau, A review of analytical techniques for gait data. Part1: Fuzzy, statistical and fractal methods, Gait and Posture, Vol.13, 2001, pp. 49-66. (Pubitemid 32109219)
    • (2001) Gait and Posture , vol.13 , Issue.1 , pp. 49-66
    • Chau, T.1
  • 5
    • 0035127282 scopus 로고    scopus 로고
    • A review of analytical techniques for gait data. Part 2: Neural network and wavelet methods
    • DOI 10.1016/S0966-6362(00)00095-3, PII S0966636200000953
    • T.Chau, A review of analytical techniques for gait data. Part 2: Neural network and wavelet methods, Gait and Posture, Vol.13, 2001, pp. 102-120. (Pubitemid 32181341)
    • (2001) Gait and Posture , vol.13 , Issue.2 , pp. 102-120
    • Chau, T.1
  • 6
    • 0027607306 scopus 로고
    • Kohle, Assessment of gait patterns using neural networks
    • S. H. Holzreiter and M.E, Kohle, Assessment of gait patterns using neural networks, Journal of Biomechanics, Vol.26, 1993, pp. 645-651.
    • (1993) Journal of Biomechanics , vol.26 , pp. 645-651
    • Holzreiter, S.H.1
  • 7
    • 12344268981 scopus 로고    scopus 로고
    • A machine learning approach for automated recognition of movement patternsusing basic, kinetic and kinematic gait data
    • Begg and Kamruzzaman, A machine learning approach for automated recognition of movement patternsusing basic, kinetic and kinematic gait data, Journal of Biomechanics, Vol.38, 2005, pp. 401-408.
    • (2005) Journal of Biomechanics , vol.38 , pp. 401-408
    • Begg1    Kamruzzaman2
  • 8
    • 0034964857 scopus 로고    scopus 로고
    • Saliency analysis of support vector machines for feature selection
    • E. Francis, T. Hock and J. C. Li, Saliency analysis of support vector machines for feature selection, Neural Network World, Vol.2, No.1, 2001, pp. 153-166.
    • (2001) Neural Network World , vol.2 , Issue.1 , pp. 153-166
    • Francis, E.1    Hock, T.2    Li, J.C.3
  • 9
    • 0032963090 scopus 로고    scopus 로고
    • Testing procedure s for non-stationarity and non-linearity in physiological signals
    • D. Popivanov and A. Mineva, Testing procedure s for non-stationarity and non-linearity in physiological signals, Mathematical Biosciences, Vol.157, 1999, pp. 303-320.
    • (1999) Mathematical Biosciences , vol.157 , pp. 303-320
    • Popivanov, D.1    Mineva, A.2
  • 10
    • 0038047157 scopus 로고    scopus 로고
    • Principal components analysis as an evaluation and classification tool for lower torso EMG data
    • M. A. Perez and M. A. Nussbaum, Principal components analysis as an evaluation and classification tool for lower torso EMG data, Journal of Biomechanics, Vol.36, No.2, 2003, pp. 1225-1229.
    • (2003) Journal of Biomechanics , vol.36 , Issue.2 , pp. 1225-1229
    • Perez, M.A.1    Nussbaum, M.A.2
  • 11
    • 0031116664 scopus 로고    scopus 로고
    • Principal component models of knee kinematics and kinetics: Normal vs.pat-hological gait patterns
    • K. J. Deluzio, U. P. Wyss, B. Zee, P. A. Costig-an and C. Sorbie, Principal component models of knee kinematics and kinetics: normal vs.pat-hological gait patterns, Human Movement Science, Vol.16, 1997, pp. 201-217.
    • (1997) Human Movement Science , vol.16 , pp. 201-217
    • Deluzio, K.J.1    Wyss, U.P.2    Zee, B.3    Costig-An, P.A.4    Sorbie, C.5
  • 12
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Scholkopf, A. J. Smola and K-R. Muller, Nonlinear component analysis as a kernel eigenvalue problem, Journal of Neural Computation, Vol.10, 1998, pp. 1299-1319.
    • (1998) Journal of Neural Computation , vol.10 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.J.2    Muller, K.-R.3
  • 13
    • 0004991251 scopus 로고    scopus 로고
    • Kernel PCA for feature extraction of ERP for human signal detection performance
    • Sweden
    • R. Rosipal and M. Girolami, Kernel PCA for feature extraction of ERP for human signal detection performance, Proc. of ANNIMAB-1 Conf erence, Sweden, 2000.
    • (2000) Proc. of ANNIMAB-1 Conf Erence
    • Rosipal, R.1    Girolami, M.2
  • 14
    • 0034964857 scopus 로고    scopus 로고
    • Saliency analysis of support vector machines for feature selection
    • E. Francis, T. Hock and J. C. Li, Saliency analysis of support vector machines for feature selection, Neural Network World, Vol.2, No.1, 2001, pp. 153-166.
    • (2001) Neural Network World , vol.2 , Issue.1 , pp. 153-166
    • Francis, E.1    Hock, T.2    Li, J.C.3
  • 17
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal com-ponent analysis
    • J.M Leea, C.K Yoob and S.W Choia, Nonlinear process monitoring using kernel principal com-ponent analysis, Chemical Engineering Science, vol.59, 2004, pp. 223-234.
    • (2004) Chemical Engineering Science , vol.59 , pp. 223-234
    • Leea, J.M.1    Yoob, C.K.2    Choia, S.W.3
  • 19
    • 0034014848 scopus 로고    scopus 로고
    • Design and testing of a genetic algorithm neural network in the assessment of gait patterns
    • DOI 10.1016/S1350-4533(00)00011-4, PII S1350453300000114
    • Fong-Chin Su and Wen-Lan Wu, Design and testing of a genetic algorithm neural network in the assessment of gait patterns, Medical Engineering &Physics, vol.22, 2000, pp.67-74. (Pubitemid 30247189)
    • (2000) Medical Engineering and Physics , vol.22 , Issue.1 , pp. 67-74
    • Su, F.-C.1    Wu, W.-L.2
  • 20
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • C. H. Q. Ding and I. Dubchak, Multi-class protein fold recognition using support vector machines and neural networks, Bioinformatics, Vol.17, 2001, pp. 349-358.
    • (2001) Bioinformatics , vol.17 , pp. 349-358
    • Ding, C.H.Q.1    Dubchak, I.2
  • 21
    • 0037387588 scopus 로고    scopus 로고
    • A Comparison of Algorithms for Detection of Spikes in the Electroencephalogram
    • C. C. C. Pang, A. R. M. Upton, G. Shine and M. V. Kamath, A Comparison of Algorithms for Detection of Spikes in the Electroencephalogram, IEEE Trans. on Biomedical Engineering, Vol.50, No.4, 2003, pp. 521-526.
    • (2003) IEEE Trans. on Biomedical Engineering , vol.50 , Issue.4 , pp. 521-526
    • Pang, C.C.C.1    Upton, A.R.M.2    Shine, G.3    Kamath, M.V.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.