-
1
-
-
0028392841
-
A multiscale random field model for Bayesian image segmentation
-
C. Bouman and M. Shapiro. A multiscale random field model for Bayesian image segmentation. IEEE Trans. Image Processing, 3(2):162-177, 1994.
-
(1994)
IEEE Trans. Image Processing
, vol.3
, Issue.2
, pp. 162-177
-
-
Bouman, C.1
Shapiro, M.2
-
4
-
-
0036537558
-
Combining belief networks and neural networks for scene segmentation
-
X. Feng, C.K.I. Williams, and S.N. Felderhof. Combining Belief Networks and Neural Networks for Scene Segmentation. PAMI, 24(4):467-483, 2002.
-
(2002)
PAMI
, vol.24
, Issue.4
, pp. 467-483
-
-
Feng, X.1
Williams, C.K.I.2
Felderhof, S.N.3
-
5
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
-
S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. PAMI, 6, 1984.
-
(1984)
PAMI
, vol.6
-
-
Geman, S.1
Geman, D.2
-
6
-
-
5044223520
-
Multiscale Conditional Random Fields for Image Labeling
-
X. He, R. Zemel, and M. Carreira-Perpinan. Multiscale Conditional Random Fields for Image Labeling.CVPR, 2, 2004.
-
(2004)
CVPR
, vol.2
-
-
He, X.1
Zemel, R.2
Carreira-Perpinan, M.3
-
7
-
-
33745837462
-
Learning and incorporating topdown cues in image segmentation
-
X. He, R.S. Zemel, and D. Ray. Learning and incorporating topdown cues in image segmentation. Lecture Notes in Computer Science, 3951:338-351, 2006.
-
(2006)
Lecture Notes in Computer Science
, vol.3951
, pp. 338-351
-
-
He, X.1
Zemel, R.S.2
Ray, D.3
-
8
-
-
0344551961
-
Epitomic analysis of appearance and shape
-
N. Jojic, B. Frey, and A. Kannan. Epitomic analysis of appearance and shape. ICCV, 2003.
-
(2003)
ICCV
-
-
Jojic, N.1
Frey, B.2
Kannan, A.3
-
9
-
-
34948905773
-
P 3 & Beyond: Solving energies with higher order cliques
-
P. Kohli, M.P. Kumar, and P.H.S. Torr. P 3 & Beyond: Solving Energies with Higher Order Cliques. CVPR, 2007.
-
(2007)
CVPR
-
-
Kohli, P.1
Kumar, M.P.2
Torr., P.H.S.3
-
10
-
-
0344120654
-
Discriminative random fields: A discriminative framework for contextual interaction in classification
-
S. Kumar and M. Hebert. Discriminative random fields: a discriminative framework for contextual interaction in classification. ICCV, 2:1150-1157, 2003.
-
(2003)
ICCV
, vol.2
, pp. 1150-1157
-
-
Kumar, S.1
Hebert, M.2
-
11
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proc. of the IEEE, 86(11):2278- 2324, 1998.
-
(1998)
Proc. of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
12
-
-
51949087595
-
Superpixel Lattices
-
A.P. Moore, S.J.D. Prince, J. Warrell, U. Mohammed, and G. Jones. Superpixel Lattices. CVPR, 2008.
-
(2008)
CVPR
-
-
Moore, A.P.1
Prince, S.J.D.2
Warrell, J.3
Mohammed, U.4
Jones, G.5
-
15
-
-
33845423382
-
TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation
-
J. Shotton, J. Winn, C. Rother, and A. Criminisi. TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-class Object Recognition and Segmentation. ECCV, 1:1-15, 2006.
-
(2006)
ECCV
, vol.1
, pp. 1-15
-
-
Shotton, J.1
Winn, J.2
Rother, C.3
Criminisi, A.4
-
17
-
-
17444392134
-
Image parsing: Unifying segmentation, detection, and recognition
-
Z. Tu, X. Chen, A.L. Yuille and S.C. Zhu. Image Parsing: Unifying Segmentation, Detection, and Recognition. IJCV, 63(2):113-140, 2005.
-
(2005)
IJCV
, vol.63
, Issue.2
, pp. 113-140
-
-
Tu, Z.1
Chen, X.2
Yuille, A.L.3
Zhu, S.C.4
|