메뉴 건너뛰기




Volumn , Issue , 2009, Pages 2023-2026

Improving emotion recognition using class-level spectral features

Author keywords

Emotion recognition

Indexed keywords

CLASSIFICATION ACCURACY; DATA SETS; EMOTION RECOGNITION; PROSODIC FEATURES; SPECTRAL COEFFICIENTS; SPECTRAL FEATURE; SPEECH SIGNALS; TYPE CLASS;

EID: 70450176956     PISSN: None     EISSN: 19909772     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (6)

References (22)
  • 2
    • 0037382608 scopus 로고    scopus 로고
    • Modeling drivers' speech under stress
    • R. Fernandez and R. Picard, "Modeling drivers' speech under stress," Speech Communication, pp. 145-159, 2003.
    • (2003) Speech Communication , pp. 145-159
    • Fernandez, R.1    Picard, R.2
  • 7
    • 34047201697 scopus 로고    scopus 로고
    • Toward a speaker-independent real-time affect detection system
    • R. Huang and C. Ma, "Toward a speaker-independent real-time affect detection system," in International Conference on Pattern Recognition, 2006, pp. 1204-1207.
    • (2006) International Conference on Pattern Recognition , pp. 1204-1207
    • Huang, R.1    Ma, C.2
  • 9
    • 38749103707 scopus 로고    scopus 로고
    • Emotion recognition in spontaneous speech using gmms
    • D. Neiberg, K. Elenius, and K. Laskowski, "Emotion recognition in spontaneous speech using gmms," in Interspeech, 2006.
    • (2006) Interspeech
    • Neiberg, D.1    Elenius, K.2    Laskowski, K.3
  • 11
    • 33745198227 scopus 로고    scopus 로고
    • Speaker independent emotion recognition by early fusion of acoustic and linguistic features within ensembles
    • B. Schuller, R. Mller, M. Lang, and G. Rigoll, "Speaker independent emotion recognition by early fusion of acoustic and linguistic features within ensembles," in Interspeech, 2005, pp. 805-809.
    • (2005) Interspeech , pp. 805-809
    • Schuller, B.1    Mller, R.2    Lang, M.3    Rigoll, G.4
  • 13
    • 0242721417 scopus 로고    scopus 로고
    • Speech emotion recognition using hidden Markov models
    • T. Nwe, S. Foo, and L. D. Silva, "Speech emotion recognition using hidden Markov models," Speech Communication, vol. 41, no. 4, pp. 603-623, 2003.
    • (2003) Speech Communication , vol.41 , Issue.4 , pp. 603-623
    • Nwe, T.1    Foo, S.2    Silva, L.D.3
  • 15
    • 84867218625 scopus 로고    scopus 로고
    • Phonetic and speaker variations in automatic emotion classification
    • V. Sethu, E. Ambikairaja, and J. Epps, "Phonetic and speaker variations in automatic emotion classification," in Interspeech, 2008, pp. 617-620.
    • (2008) Interspeech , pp. 617-620
    • Sethu, V.1    Ambikairaja, E.2    Epps, J.3
  • 16
    • 52049109828 scopus 로고    scopus 로고
    • Linguistic Data Consortium, LDC Catalog No, LDC2002S28, University of Pennsylvania
    • Linguistic Data Consortium, "Emotional prosody speech and transcripts," LDC Catalog No.: LDC2002S28, University of Pennsylvania.
    • Emotional prosody speech and transcripts
  • 19
    • 4444257069 scopus 로고    scopus 로고
    • Praat, a system for doing phonetics by computer
    • P. Boersma and D. Weenink, "Praat, a system for doing phonetics by computer," Glot International, pp. 341-345, 2001.
    • (2001) Glot International , pp. 341-345
    • Boersma, P.1    Weenink, D.2
  • 21
    • 84947280249 scopus 로고    scopus 로고
    • Recognition of emotions in interactive voice response systems
    • S. Yacoub, S. Simske, X. Lin, and J. Burns, "Recognition of emotions in interactive voice response systems," Proceedings of Eurospeech, pp. 729-732, 2003.
    • (2003) Proceedings of Eurospeech , pp. 729-732
    • Yacoub, S.1    Simske, S.2    Lin, X.3    Burns, J.4
  • 22
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • A. Jain and D. Zongker, "Feature selection: Evaluation, application, and small sample performance," IEEE Trans. on PAMI, vol. 19, no. 2, pp. 153-158, 1997.
    • (1997) IEEE Trans. on PAMI , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1    Zongker, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.