메뉴 건너뛰기




Volumn 5769 LNCS, Issue PART 2, 2009, Pages 416-425

Noiseless independent factor analysis with mixing constraints in a semi-supervised framework. application to railway device fault diagnosis

Author keywords

Diagnosis; Independent Factor Analysis; Mixing constraints; Railway device; Semi supervised learning

Indexed keywords

CLUSTER MEMBERSHIPS; FAULT DIAGNOSIS; INDEPENDENT FACTOR ANALYSIS; MIXING PROCESS; MIXTURES OF GAUSSIANS; OBSERVED DATA; PARTIAL KNOWLEDGE; PARTIALLY SUPERVISED LEARNING; PRIOR INFORMATION; RAILWAY DEVICE; REAL-WORLD APPLICATION; SEMI-SUPERVISED; SEMI-SUPERVISED LEARNING; SOURCE DENSITY;

EID: 70450158530     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-04277-5_42     Document Type: Conference Paper
Times cited : (7)

References (19)
  • 2
    • 0029411030 scopus 로고
    • An information maximization approach to blind separation and blind deconvolution
    • Bell, A.J., Sejnowski, T.J.: An information maximization approach to blind separation and blind deconvolution. Neural Computation 7(6), 1129-1159 (1995)
    • (1995) Neural Computation , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 5
    • 0033561886 scopus 로고    scopus 로고
    • Independent factor analysis
    • Attias, H.: Independent factor analysis. Neural Computation 11(4), 803-851 (1999)
    • (1999) Neural Computation , vol.11 , Issue.4 , pp. 803-851
    • Attias, H.1
  • 6
    • 84898983831 scopus 로고    scopus 로고
    • Independent factor analysis with temporally structured factors
    • MIT Press, Cambridge
    • Attias, H.: Independent factor analysis with temporally structured factors. In: Proceedings of the 12th NIPS Conference, pp. 386-392. MIT Press, Cambridge (2000)
    • (2000) Proceedings of the 12th NIPS Conference , pp. 386-392
    • Attias, H.1
  • 7
    • 44649130165 scopus 로고    scopus 로고
    • On the decomposition of Mars Hyperspectral data by ICA and Bayesian positive source separation. Neurocomputing for Vision Research; Advances in Blind
    • Moussaoui, S., Hauksdóttir, H., Schmidt, F., Jutten, C., Chanussot, J., Brie, D., Douté, D., Benediktosson, J.: On the decomposition of Mars Hyperspectral data by ICA and Bayesian positive source separation. Neurocomputing for Vision Research; Advances in Blind Signal Processing 71, 2194-2208 (2008)
    • (2008) Signal Processing , vol.71 , pp. 2194-2208
    • Moussaoui, S.1    Hauksdóttir, H.2    Schmidt, F.3    Jutten, C.4    Chanussot, J.5    Brie, D.6    Douté, D.7    Benediktosson, J.8
  • 8
    • 0036947684 scopus 로고    scopus 로고
    • Imposing sparsity on the mixing matrix in independent component analysis
    • Hyvärinen, A., Karthikesh, R.: Imposing sparsity on the mixing matrix in independent component analysis. Neurocomputing 49(1), 151-162 (2002)
    • (2002) Neurocomputing , vol.49 , Issue.1 , pp. 151-162
    • Hyvärinen, A.1    Karthikesh, R.2
  • 11
    • 78649822914 scopus 로고    scopus 로고
    • Non-negative maximum likelihood ICA for blind source separation of images and signals with application to hyperspectral image subpixel demixing
    • Bakir, T., Peter, A., Riley, R., Hackett, J.: Non-negative maximum likelihood ICA for blind source separation of images and signals with application to hyperspectral image subpixel demixing. In: Proceedings of the IEEE International Conference on Image Processing, pp. 3237-3240 (2006)
    • (2006) Proceedings of the IEEE International Conference on Image Processing , pp. 3237-3240
    • Bakir, T.1    Peter, A.2    Riley, R.3    Hackett, J.4
  • 16
    • 54549108812 scopus 로고    scopus 로고
    • Learning from partially supervised data using mixture models and belief functions
    • Cǒme, E., Oukhellou, L., Denœux, T., Aknin, P.: Learning from partially supervised data using mixture models and belief functions. Pattern recognition 42, 334-348 (2009)
    • (2009) Pattern recognition , vol.42 , pp. 334-348
    • Cǒme, E.1    Oukhellou, L.2    Denœux, T.3    Aknin, P.4
  • 17
    • 50149117227 scopus 로고    scopus 로고
    • Output coding of spatially dependent subclassifiers in evidential framework. Application to the diagnosis of railway track-vehicle transmission system
    • Florence, Italy July
    • Debiolles, A., Oukhellou, L., Denoeux, T., Aknin, P.: Output coding of spatially dependent subclassifiers in evidential framework. Application to the diagnosis of railway track-vehicle transmission system. In: Proceedings of FUSION 2006, Florence, Italy (July 2006)
    • (2006) Proceedings of FUSION
    • Debiolles, A.1    Oukhellou, L.2    Denoeux, T.3    Aknin, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.