메뉴 건너뛰기




Volumn 71, Issue 12, 2009, Pages

On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification

Author keywords

Evolutionary designing; Evolutionary learning; Fuzzy logic; Logical fuzzy model; Mamdani fuzzy model; Neuro fuzzy systems

Indexed keywords

EVOLUTIONARY DESIGNING; EVOLUTIONARY LEARNING; FUZZY MODELS; MAMDANI FUZZY MODELS; NEUROFUZZY SYSTEM;

EID: 70450130801     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.na.2009.02.028     Document Type: Article
Times cited : (67)

References (47)
  • 1
    • 33746219540 scopus 로고    scopus 로고
    • A method for designing flexible neuro-fuzzy systems
    • Artificial Intelligence and Soft Computing, Springer
    • Cpałka K. A method for designing flexible neuro-fuzzy systems. Artificial Intelligence and Soft Computing. Lecture Notes in Artificial Intelligence vol. LNAI4029 (2006), Springer 212-219
    • (2006) Lecture Notes in Artificial Intelligence , vol.LNAI4029 , pp. 212-219
    • Cpałka, K.1
  • 10
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation: Survey in soft computing framework
    • Mitra S., and Hayashi Y. Neuro-fuzzy rule generation: Survey in soft computing framework. IEEE Trans. Neural Netw. 11 (2000) 748-768
    • (2000) IEEE Trans. Neural Netw. , vol.11 , pp. 748-768
    • Mitra, S.1    Hayashi, Y.2
  • 13
    • 55749115221 scopus 로고    scopus 로고
    • K. Neshatian, M. Zhang, Genetic programming for performance improvement and dimensionality reduction of classification problems, in: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, CEC 2008, 2008, pp. 2816-2823
    • K. Neshatian, M. Zhang, Genetic programming for performance improvement and dimensionality reduction of classification problems, in: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, CEC 2008, 2008, pp. 2816-2823
  • 15
    • 50649106440 scopus 로고    scopus 로고
    • On combining neuro-fuzzy architectures with the rough set theory to solve classification problems with incomplete data
    • Nowicki R. On combining neuro-fuzzy architectures with the rough set theory to solve classification problems with incomplete data. IEEE Trans. Know. Data Eng. 20 (2008) 1239-1253
    • (2008) IEEE Trans. Know. Data Eng. , vol.20 , pp. 1239-1253
    • Nowicki, R.1
  • 18
    • 0035395913 scopus 로고    scopus 로고
    • A novel approach to the derivation of fuzzy membership functions using the Falcon-MART architecture
    • Quek C., and Tung W.L. A novel approach to the derivation of fuzzy membership functions using the Falcon-MART architecture. Pattern Recognit. Lett. 22 (2001) 941-958
    • (2001) Pattern Recognit. Lett. , vol.22 , pp. 941-958
    • Quek, C.1    Tung, W.L.2
  • 19
    • 0035415950 scopus 로고    scopus 로고
    • Compact and transparent fuzzy models and classifiers through iterative complexity reduction
    • Roubos H., and Setnes M. Compact and transparent fuzzy models and classifiers through iterative complexity reduction. IEEE Trans. Fuzzy Syst. 9 4 (2001) 516-524
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , Issue.4 , pp. 516-524
    • Roubos, H.1    Setnes, M.2
  • 22
    • 14644433722 scopus 로고    scopus 로고
    • Designing and learning of adjustable quasi triangular norms with applications to neuro-fuzzy systems
    • Rutkowski L., and Cpałka K. Designing and learning of adjustable quasi triangular norms with applications to neuro-fuzzy systems. IEEE Trans. Fuzzy Systems 13 (2005) 140-151
    • (2005) IEEE Trans. Fuzzy Systems , vol.13 , pp. 140-151
    • Rutkowski, L.1    Cpałka, K.2
  • 25
    • 44949271432 scopus 로고
    • On fuzzy implication
    • Fodor C. On fuzzy implication. Fuzzy Sets and Systems 42 (1991) 293-300
    • (1991) Fuzzy Sets and Systems , vol.42 , pp. 293-300
    • Fodor, C.1
  • 32
    • 34548238741 scopus 로고    scopus 로고
    • Incremental evolutionary design of tsk fuzzy controllers
    • Hoffmann F., Schauten D., and Holemann S. Incremental evolutionary design of tsk fuzzy controllers. IEEE Trans. Fuzzy Systems 15 4 (2005) 563-577
    • (2005) IEEE Trans. Fuzzy Systems , vol.15 , Issue.4 , pp. 563-577
    • Hoffmann, F.1    Schauten, D.2    Holemann, S.3
  • 35
    • 33749382626 scopus 로고    scopus 로고
    • Evolving compact and interpretable Takagi-Sugeno fuzzy models with a new encoding scheme
    • Kim M.S., Kim C.H., and Lee J.J. Evolving compact and interpretable Takagi-Sugeno fuzzy models with a new encoding scheme. IEEE Trans. Syst. Man Cybern. 36 5 (2006) 1006-1023
    • (2006) IEEE Trans. Syst. Man Cybern. , vol.36 , Issue.5 , pp. 1006-1023
    • Kim, M.S.1    Kim, C.H.2    Lee, J.J.3
  • 36
    • 34548207738 scopus 로고    scopus 로고
    • Reinforcement hybrid evolutionary learning for recurrent wavelet-based neurofuzzy systems
    • Lin C.-J., and Hsu Y.-C. Reinforcement hybrid evolutionary learning for recurrent wavelet-based neurofuzzy systems. IEEE Trans. Fuzzy Systems 15 4 (2007) 729-745
    • (2007) IEEE Trans. Fuzzy Systems , vol.15 , Issue.4 , pp. 729-745
    • Lin, C.-J.1    Hsu, Y.-C.2
  • 38
    • 0034294243 scopus 로고    scopus 로고
    • GA-fuzzy modeling and classification: Complexity and performance
    • Setnes M., and Roubosm H. GA-fuzzy modeling and classification: Complexity and performance. IEEE Trans. Fuzzy Systems 8 5 (2000) 509-522
    • (2000) IEEE Trans. Fuzzy Systems , vol.8 , Issue.5 , pp. 509-522
    • Setnes, M.1    Roubosm, H.2
  • 39
    • 18544378721 scopus 로고    scopus 로고
    • Agent-based evolutionary approach for interpretable rule-based knowledge extraction
    • Wang H., Kwong S., and Jin Y. Agent-based evolutionary approach for interpretable rule-based knowledge extraction. IEEE Trans. Syst. Man Cybern. 35 2 (2005) 143-155
    • (2005) IEEE Trans. Syst. Man Cybern. , vol.35 , Issue.2 , pp. 143-155
    • Wang, H.1    Kwong, S.2    Jin, Y.3
  • 40
    • 9644257194 scopus 로고    scopus 로고
    • Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction
    • Wang H., Kwong S., Jin Y., Wei W., and Man K.F. Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction. Fuzzy Sets and Systems 149 1 (2005) 149-186
    • (2005) Fuzzy Sets and Systems , vol.149 , Issue.1 , pp. 149-186
    • Wang, H.1    Kwong, S.2    Jin, Y.3    Wei, W.4    Man, K.F.5
  • 41
    • 34250856811 scopus 로고    scopus 로고
    • Automatic design of hierarchical Takagi-Sugeno type fuzzy systems using evolutionary algorithms
    • Yuehui C., Bo Y., Abraham A., and Lizhi P. Automatic design of hierarchical Takagi-Sugeno type fuzzy systems using evolutionary algorithms. IEEE Trans. Fuzzy Systems 15 3 (2007) 385-397
    • (2007) IEEE Trans. Fuzzy Systems , vol.15 , Issue.3 , pp. 385-397
    • Yuehui, C.1    Bo, Y.2    Abraham, A.3    Lizhi, P.4
  • 45
    • 0035361059 scopus 로고    scopus 로고
    • Look-ahead based fuzzy decision tree induction
    • Dong M., and Kothari R. Look-ahead based fuzzy decision tree induction. IEEE Trans. Fuzzy Systems 9 (2001) 461-468
    • (2001) IEEE Trans. Fuzzy Systems , vol.9 , pp. 461-468
    • Dong, M.1    Kothari, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.