메뉴 건너뛰기




Volumn , Issue , 2008, Pages 1951-1958

Feature subset selection in a methodology for training and improving artificial neural network weights and connections

Author keywords

[No Author keywords available]

Indexed keywords

ANNEALING; BACKPROPAGATION; BACKPROPAGATION ALGORITHMS; DIESEL ENGINES; GENETIC ALGORITHMS; GLOBAL OPTIMIZATION; HEURISTIC ALGORITHMS; SIMULATED ANNEALING; TABU SEARCH; VEGETATION;

EID: 56349086073     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2008.4634065     Document Type: Conference Paper
Times cited : (3)

References (18)
  • 3
    • 0002035566 scopus 로고
    • Reducing bias and inefficiency in the selection algorithm
    • J. E. Baker. Reducing bias and inefficiency in the selection algorithm. In Int. Conf. Gen. Alg. and their Application, pages 14-21, 1987.
    • (1987) Int. Conf. Gen. Alg. and their Application , pp. 14-21
    • Baker, J.E.1
  • 4
    • 0003408496 scopus 로고    scopus 로고
    • Cuci repository of machine learning databases
    • Technical report, University of California, Irvine, CA
    • C. L. Blake and C J. Merz. Cuci repository of machine learning databases. Technical report, University of California, Irvine, CA, 1998.
    • (1998)
    • Blake, C.L.1    Merz, C.J.2
  • 5
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A. Blum and P. Langley. Selection of relevant features and examples in machine learning. In Artificial Intellignce, volume 97, pages 245-271, 1997.
    • (1997) Artificial Intellignce , vol.97 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 6
    • 56349157007 scopus 로고    scopus 로고
    • L. Davis. Bit-climbing, representational bias, and test suite design. In Proceedings of the Fourth International Conference on Genetic Algorithms, pages 18-23. Morgan K. Publishers Inc., 1991.
    • L. Davis. Bit-climbing, representational bias, and test suite design. In Proceedings of the Fourth International Conference on Genetic Algorithms, pages 18-23. Morgan K. Publishers Inc., 1991.
  • 7
    • 56349111896 scopus 로고    scopus 로고
    • Richard O. Duda and Peter E. Hart adn David G. Stork. Pattern. Classification. Wiley, 2000.
    • Richard O. Duda and Peter E. Hart adn David G. Stork. Pattern. Classification. Wiley, 2000.
  • 10
    • 0004255908 scopus 로고    scopus 로고
    • chapter Evaluating hypotheses, WCB/McGraw-Hill
    • T. M. Mitchell. Machine Learning., chapter Evaluating hypotheses, pages 128-153. WCB/McGraw-Hill, 1997.
    • (1997) Machine Learning , pp. 128-153
    • Mitchell, T.M.1
  • 11
    • 56349129672 scopus 로고    scopus 로고
    • L. Prehelt. Proben 1 - a set of neural network benchmark problems and benchmarking rules. Technical Report 21, Univ. Karlsruhe, 1994.
    • L. Prehelt. Proben 1 - a set of neural network benchmark problems and benchmarking rules. Technical Report 21, Univ. Karlsruhe, 1994.
  • 13
    • 0033130747 scopus 로고    scopus 로고
    • Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing
    • R. S. Sexton, R. E. Dorsey, and J. D. Johnson. Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing. In European Journal of Operational Research, volume 114, pages 589-601, 1999.
    • (1999) European Journal of Operational Research , vol.114 , pp. 589-601
    • Sexton, R.S.1    Dorsey, R.E.2    Johnson, J.D.3
  • 14
    • 0030248249 scopus 로고    scopus 로고
    • Improved feature screening in feedforward neural, networks
    • J.M. Steppe and K.W. Bauer. Improved feature screening in feedforward neural, networks. Neurocomputing, 13:4758, 1996.
    • (1996) Neurocomputing , vol.13 , pp. 4758
    • Steppe, J.M.1    Bauer, K.W.2
  • 15
    • 56349124696 scopus 로고    scopus 로고
    • G. Sywerda. Uniform crossover in genetic algorithm. In Int. Conf. on Genetic algorithms, pages 2-9. Morgan K. Publishers Inc., 1989.
    • G. Sywerda. Uniform crossover in genetic algorithm. In Int. Conf. on Genetic algorithms, pages 2-9. Morgan K. Publishers Inc., 1989.
  • 17
    • 33646436170 scopus 로고    scopus 로고
    • Hybrid technique for artificial neural network architecture and weight optimization
    • C. Zanchettin and T. B. Ludermir. Hybrid technique for artificial neural network architecture and weight optimization. In Lecture Notes in Artificial Intelligence, volume 3721, pages 709-716, 2005.
    • (2005) Lecture Notes in Artificial Intelligence , vol.3721 , pp. 709-716
    • Zanchettin, C.1    Ludermir, T.B.2
  • 18
    • 40649123019 scopus 로고    scopus 로고
    • A methodology to train and improve artificial neural networks weights and connections
    • IEEE Computer Society
    • C. Zanchettin and T. B. Ludermir. A methodology to train and improve artificial neural networks weights and connections. In Int. Joint Conf. on Neural Networks, pages 1-12. IEEE Computer Society, 2006.
    • (2006) Int. Joint Conf. on Neural Networks , pp. 1-12
    • Zanchettin, C.1    Ludermir, T.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.