-
1
-
-
84974028928
-
Nonlinear analytic semiflows
-
Mathematical Reviews (MathSciNet): MR1059647 Zentralblatt MATH: 0723.34047
-
S. B. Angenent, Nonlinear analytic semiflows, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), 91-107. Mathematical Reviews (MathSciNet): MR1059647 Zentralblatt MATH: 0723.34047
-
(1990)
Proc. Roy. Soc. Edinburgh Sect. A.
, vol.115
, pp. 91-107
-
-
Angenent, S.B.1
-
2
-
-
70449691001
-
-
Beispiel eines blowup-limes für den Willmorefluss, diploma thesis, Universität Bonn, Bonn, Germany
-
S. Blatt, Beispiel eines blowup-limes für den Willmorefluss, diploma thesis, Universität Bonn, Bonn, Germany, 2004
-
(2004)
-
-
Blatt, S.1
-
3
-
-
0038116267
-
On the Łojasiewicz-Simon gradient inequality
-
Mathematical Reviews (MathSciNet): MR1986700 Digital Object Identifier: doi:10. 1016/S0022-1236(02)00102-7
-
R. Chill, On the Łojasiewicz-Simon gradient inequality, J. Funct. Anal. 201 (2003), 572-601. Mathematical Reviews (MathSciNet): MR1986700 Digital Object Identifier: doi:10.1016/S0022-1236(02)00102-7
-
(2003)
J. Funct. Anal.
, vol.201
, pp. 572-601
-
-
Chill, R.1
-
4
-
-
0035289434
-
The Willmore flow with small initial energy
-
Mathematical Reviews (MathSciNet): MR1882663 Project Euclid: euclid. jdg/1090348128 Zentralblatt MATH: 1035.53092
-
E. Kuwert and R. SchäTzle, The Willmore flow with small initial energy, J. Differential Geom. 57 (2001), 409-441. Mathematical Reviews (MathSciNet): MR1882663 Project Euclid: euclid.jdg/1090348128 Zentralblatt MATH: 1035.53092
-
(2001)
J. Differential Geom.
, vol.57
, pp. 409-441
-
-
Kuwert, E.1
SchäTzle, R.2
-
5
-
-
0038779042
-
Gradient flow for the Willmore functional
-
Mathematical Reviews (MathSciNet): MR1900754 Zentralblatt MATH: 1029.53082
-
E. Kuwert and R. SchäTzle, Gradient flow for the Willmore functional, Comm. Anal. Geom. 10 (2002), 307-339. Mathematical Reviews (MathSciNet): MR1900754 Zentralblatt MATH: 1029.53082
-
(2002)
Comm. Anal. Geom.
, vol.10
, pp. 307-339
-
-
Kuwert, E.1
SchäTzle, R.2
-
6
-
-
15744389246
-
Removability of point singularities of Willmore surfaces
-
Mathematical Reviews (MathSciNet): MR2119722 Digital Object Identifier: doi:10. 4007/annals. 2004. 160. 315 Zentralblatt MATH: 1078.53007
-
E. Kuwert and R. SchäTzle, Removability of point singularities of Willmore surfaces, Ann. of Math. (2) 160 (2004), 315-357. Mathematical Reviews (MathSciNet): MR2119722 Digital Object Identifier: doi:10.4007/annals.2004.160.315 Zentralblatt MATH: 1078.53007
-
(2004)
Ann. of Math.
, vol.160
, Issue.2
, pp. 315-357
-
-
Kuwert, E.1
SchäTzle, R.2
-
7
-
-
70449692330
-
Linear and Quasilinear Equations of Parabolic Type English translation in Trans. Math. Monogr
-
Mathematical Reviews (MathSciNet): MR0241822
-
O. A. Ladyženskaja, v. a. solonnikov, and N. N. Ural'Ceva, Linear and Quasilinear Equations of Parabolic Type, English translation in Trans. Math. Monogr. 23, Amer. Math. Soc., Providence, 1967. Mathematical Reviews (MathSciNet): MR0241822
-
(1967)
Amer. Math. Soc., Providence
-
-
Ladyženskaja, O.A.1
solonnikov, V.A.2
Ural'Ceva, N.N.3
-
8
-
-
0000601125
-
p-bounded second fundamental form
-
Mathematical Reviews (MathSciNet): MR0771980 Digital Object Identifier: doi:10. 1007/BF01456183 Zentralblatt MATH: 0564.58010
-
p-bounded second fundamental form, Math. Ann. 270 (1985), 223-234. Mathematical Reviews (MathSciNet): MR0771980 Digital Object Identifier: doi:10.1007/BF01456183 Zentralblatt MATH: 0564.58010
-
(1985)
Math. Ann.
, vol.270
, pp. 223-234
-
-
Langer, J.1
-
9
-
-
0001278224
-
A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces
-
Mathematical Reviews (MathSciNet): MR0674407 Digital Object Identifier: doi:10. 1007/BF01399507 Zentralblatt MATH: 0503.53042
-
P. Li and S.T. Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math. 69 (1982), 269-291. Mathematical Reviews (MathSciNet): MR0674407 Digital Object Identifier: doi:10.1007/BF01399507 Zentralblatt MATH: 0503.53042
-
(1982)
Invent. Math.
, vol.69
, pp. 269-291
-
-
Li, P.1
Yau, S.T.2
-
10
-
-
70449655438
-
-
Ensembles semi-analytiques, preprint, Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France
-
S. łOjasiewicz, Ensembles semi-analytiques, preprint, Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France, 1965.
-
(1965)
-
-
łOjasiewicz, S.1
-
11
-
-
0003963531
-
Analytic Semigroups Optimal Regularity in Parabolic Problems
-
Birkhäuser Basel Mathematical Reviews (MathSciNet): MR1329547 Zentralblatt MATH: 0816.35001
-
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progr. Nonlinear Differential Equations Appl. 16, Birkhäuser, Basel, 1995. Mathematical Reviews (MathSciNet): MR1329547 Zentralblatt MATH: 0816.35001
-
(1995)
Progr. Nonlinear Differential Equations Appl.
-
-
Lunardi, A.1
-
12
-
-
78651547991
-
A numerical scheme for axisymmetric solutions of curvature-driven free boundary problems, with applications to the Willmore flow
-
Mathematical Reviews (MathSciNet): MR1877537
-
U. F. Mayer and G. Simonett, A numerical scheme for axisymmetric solutions of curvature-driven free boundary problems, with applications to the Willmore flow, Interfaces Free Bound. 4 (2002), 89-109. Mathematical Reviews (MathSciNet): MR1877537
-
(2002)
Interfaces Free Bound
, vol.4
, pp. 89-109
-
-
Mayer, U.F.1
Simonett, G.2
-
13
-
-
0000137102
-
Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems
-
Mathematical Reviews (MathSciNet): MR0727703 Digital Object Identifier: doi:10. 2307/2006981 JSTOR: links. jstor. org
-
L. Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. of Math. (2) 118 (1983), 525-571. Mathematical Reviews (MathSciNet): MR0727703 Digital Object Identifier: doi:10.2307/2006981 JSTOR: links.jstor.org
-
(1983)
Ann. of Math.
, vol.118
, Issue.2
, pp. 525-571
-
-
Simon, L.1
-
14
-
-
0011599168
-
The Willmore flow near spheres
-
Mathematical Reviews (MathSciNet): MR1827100
-
G. Simonett, The Willmore flow near spheres, Differential Integral Equations 14 (2001), 1005-1014. Mathematical Reviews (MathSciNet): MR1827100
-
(2001)
Differential Integral Equations
, vol.14
, pp. 1005-1014
-
-
Simonett, G.1
-
15
-
-
0002460686
-
Minimal varieties in riemannian manifolds
-
Mathematical Reviews (MathSciNet): MR0233295 Digital Object Identifier: doi:10. 2307/1970556 JSTOR: links. jstor. org
-
J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62-105. Mathematical Reviews (MathSciNet): MR0233295 Digital Object Identifier: doi:10.2307/1970556 JSTOR: links.jstor.org
-
(1968)
Ann. of Math.
, vol.88
, Issue.2
, pp. 62-105
-
-
Simons, J.1
-
16
-
-
0004028728
-
Total Curvature in Riemannian Geometry, Ellis
-
Wiley, New York
-
T. J. Willmore, Total Curvature in Riemannian Geometry, Ellis Horwood Ser. Math. Appl., Wiley, New York, 1982. Mathematical Reviews (MathSciNet): MR0686105 Zentralblatt MATH: 0501.53038
-
(1982)
Horwood Ser. Math. Appl.
-
-
Willmore, T.J.1
-
17
-
-
70449683413
-
-
Oxford Sci. Oxford Publ. Press Univ. New York
-
T. J. Willmore, Riemannian Geometry, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993. Mathematical Reviews (MathSciNet): MR1261641
-
(1993)
-
-
Willmore, T.J.1
Geometry, R.2
-
18
-
-
0003678750
-
Nonlinear Functional Analysis and Its Applications
-
I: Fixed-Point Theorems, Springer, New York. (MathSciNet): MR0816732 Zentralblatt MATH: 0583.47050
-
E. Zeidler, Nonlinear Functional Analysis and Its Applications, I: Fixed-Point Theorems, Springer, New York, 1986. Mathematical Reviews (MathSciNet): MR0816732 Zentralblatt MATH: 0583.47050
-
(1986)
Mathematical Reviews
-
-
Zeidler, E.1
|