메뉴 건너뛰기




Volumn 14, Issue 3, 2004, Pages 1529-1558

Iterated Brownian motion in an open set

Author keywords

Exit time; Iterated Brownian motion

Indexed keywords


EID: 26844508919     PISSN: 10505164     EISSN: 10505164     Source Type: Journal    
DOI: 10.1214/105051604000000404     Document Type: Article
Times cited : (42)

References (48)
  • 1
    • 0001922660 scopus 로고    scopus 로고
    • Asymptotic expansion of fundamental solutions of higher order heat equations
    • ACCETTA, G. and ORSINGHER, E. (1997). Asymptotic expansion of fundamental solutions of higher order heat equations. Random Oper. Stochastic Equations 5 217-226.
    • (1997) Random Oper. Stochastic Equations , vol.5 , pp. 217-226
    • Accetta, G.1    Orsingher, E.2
  • 2
    • 0035470879 scopus 로고    scopus 로고
    • Brownian-time processes: The PDE connection and the half-derivative generator
    • ALLOUBA, H. and ZHENG, W. (2001). Brownian-time processes: The PDE connection and the half-derivative generator. Ann. Probab. 29 1780-1795.
    • (2001) Ann. Probab. , vol.29 , pp. 1780-1795
    • Allouba, H.1    Zheng, W.2
  • 3
    • 0036829667 scopus 로고    scopus 로고
    • Brownian-time processes: The PDE connection II and the corresponding Feyman-Kac formula
    • ALLOUBA, H. (2002). Brownian-time processes: The PDE connection II and the corresponding Feyman-Kac formula. Trans. Amer. Math. Soc. 354 4627-4637.
    • (2002) Trans. Amer. Math. Soc. , vol.354 , pp. 4627-4637
    • Allouba, H.1
  • 4
    • 0000670023 scopus 로고
    • On the law of the iterated logarithm for Gaussian processes
    • ARCONES, M. A. (1995). On the law of the iterated logarithm for Gaussian processes. J. Theoret. Probab. 8 877-903.
    • (1995) J. Theoret. Probab. , vol.8 , pp. 877-903
    • Arcones, M.A.1
  • 6
    • 0042123080 scopus 로고    scopus 로고
    • Conditional maximal distributions of processes related to higher-order heat-type equations
    • BEGHIN, L., HOCHBERG, K. J. and ORSINGHER, E. (2000). Conditional maximal distributions of processes related to higher-order heat-type equations. Stochastic Process. Appl. 85 209-223.
    • (2000) Stochastic Process. Appl. , vol.85 , pp. 209-223
    • Beghin, L.1    Hochberg, K.J.2    Orsingher, E.3
  • 7
    • 0041401266 scopus 로고    scopus 로고
    • Joint distributions of the maximum and the process for higher-order diffusions
    • BEGHIN, L., ORSINGHER, E. and ROGOZINA, T. (2001). Joint distributions of the maximum and the process for higher-order diffusions. Stochastic Process. Appl. 94 71-93.
    • (2001) Stochastic Process. Appl. , vol.94 , pp. 71-93
    • Beghin, L.1    Orsingher, E.2    Rogozina, T.3
  • 8
    • 0030119978 scopus 로고    scopus 로고
    • Iterated Brownian motion and stable (1/4) subordinator
    • BERTOIN, J. (1996). Iterated Brownian motion and stable (1/4) subordinator. Statist. Probab. Lett. 27 111-114.
    • (1996) Statist. Probab. Lett. , vol.27 , pp. 111-114
    • Bertoin, J.1
  • 11
    • 0002163527 scopus 로고
    • Some path properties of iterated Brownian motion
    • (E. Çinlar, K. L. Chung and M. J. Sharpe, eds.). Birkhäuser, Boston
    • BURDZY, K. (1993). Some path properties of iterated Brownian motion. In Seminar on Stochastic Processes (E. Çinlar, K. L. Chung and M. J. Sharpe, eds.) 67-87. Birkhäuser, Boston.
    • (1993) Seminar on Stochastic Processes , pp. 67-87
    • Burdzy, K.1
  • 14
    • 0032222165 scopus 로고    scopus 로고
    • Brownian motion in a Brownian crack
    • BURDZY, K. and KHOSHNEVISAN, D. (1998). Brownian motion in a Brownian crack. Ann. Appl. Probab. 8 708-748.
    • (1998) Ann. Appl. Probab. , vol.8 , pp. 708-748
    • Burdzy, K.1    Khoshnevisan, D.2
  • 15
    • 0000498245 scopus 로고
    • Exit times of Brownian motion, harmonic majorization and Hardy spaces
    • BURKHOLDER, D. L. (1977). Exit times of Brownian motion, harmonic majorization and Hardy spaces. Adv. Math. 26 182-205.
    • (1977) Adv. Math. , vol.26 , pp. 182-205
    • Burkholder, D.L.1
  • 21
    • 0002346840 scopus 로고
    • A functional LIL approach to pointwise Bahadur-Kiefer theorems
    • (R. M. Dudley, M. G. Hahn and J. Kuelbs, eds.). Birkhäuser, Boston
    • DEHEUVELS, P. and MASON, D. M. (1992). A functional LIL approach to pointwise Bahadur-Kiefer theorems. In Probability in Banach Spaces (R. M. Dudley, M. G. Hahn and J. Kuelbs, eds.) 255-266. Birkhäuser, Boston.
    • (1992) Probability in Banach Spaces , pp. 255-266
    • Deheuvels, P.1    Mason, D.M.2
  • 23
    • 0001601561 scopus 로고
    • A probabilistic construction of the solution of some higher order parabolic differential equations
    • FUNAKI, T. (1979). A probabilistic construction of the solution of some higher order parabolic differential equations. Proc. Japan Acad. Ser. A Math. Sci. 55 176-179.
    • (1979) Proc. Japan Acad. Ser. a Math. Sci. , vol.55 , pp. 176-179
    • Funaki, T.1
  • 25
    • 0039465262 scopus 로고
    • Biharmonic functions and Brownian motion
    • HELMS, L. L. (1967). Biharmonic functions and Brownian motion. J. Appl. Probab. 4 130-136.
    • (1967) J. Appl. Probab. , vol.4 , pp. 130-136
    • Helms, L.L.1
  • 26
    • 26844580458 scopus 로고
    • Biharmonic functions with prescribed fine normal derivative on the Martin boundary
    • HELMS, L. L. (1987). Biharmonic functions with prescribed fine normal derivative on the Martin boundary. Acta Math. Hungar. 49 139-143.
    • (1987) Acta Math. Hungar. , vol.49 , pp. 139-143
    • Helms, L.L.1
  • 27
    • 21344452030 scopus 로고    scopus 로고
    • Composition of stochastic processes governed by higher-order parabolic and hyperbolic equations
    • HOCHBERG, K. J. and ORSINGHER, E. (1996). Composition of stochastic processes governed by higher-order parabolic and hyperbolic equations. J. Theoret. Probab. 9 511-532.
    • (1996) J. Theoret. Probab. , vol.9 , pp. 511-532
    • Hochberg, K.J.1    Orsingher, E.2
  • 28
    • 0042638003 scopus 로고    scopus 로고
    • Hausdorff and packing functions of the level sets of iterated Brownian motion
    • HU, Y. (1999). Hausdorff and packing functions of the level sets of iterated Brownian motion. J. Theoret. Probab. 12 313-346.
    • (1999) J. Theoret. Probab. , vol.12 , pp. 313-346
    • Hu, Y.1
  • 29
    • 0000246731 scopus 로고
    • Laws of the iterated logarithm for iterated Wiener processes
    • HU, Y., PIERRE-LOTTI-VIAND, D. and SHI, Z. (1995). Laws of the iterated logarithm for iterated Wiener processes. J. Theoret. Probab. 8 303-319.
    • (1995) J. Theoret. Probab. , vol.8 , pp. 303-319
    • Hu, Y.1    Pierre-Lotti-Viand, D.2    Shi, Z.3
  • 30
    • 0000613453 scopus 로고
    • The Csörgo-Révész modulus of non-differentiability of iterated Brownian motion
    • HU, Y. and SHI, Z. (1995). The Csörgo-Révész modulus of non-differentiability of iterated Brownian motion. Stochastic Process. Appl. 58 267-279.
    • (1995) Stochastic Process. Appl. , vol.58 , pp. 267-279
    • Hu, Y.1    Shi, Z.2
  • 31
    • 21344473661 scopus 로고    scopus 로고
    • The uniform modulus of continuity for iterated Brownian motion
    • KHOSHNEVISAN, D. and LEWIS, T. M. (1996). The uniform modulus of continuity for iterated Brownian motion. J. Theoret. Probab. 9 317-333.
    • (1996) J. Theoret. Probab. , vol.9 , pp. 317-333
    • Khoshnevisan, D.1    Lewis, T.M.2
  • 32
    • 0347061075 scopus 로고    scopus 로고
    • Chung's law of the iterated logarithm for iterated Brownian motion
    • KHOSHNEVISAN, D. and LEWIS, T. M. (1996). Chung's law of the iterated logarithm for iterated Brownian motion. Ann. Inst. H. Poincaré Probab. Statist. 32 349-359.
    • (1996) Ann. Inst. H. Poincaré Probab. Statist. , vol.32 , pp. 349-359
    • Khoshnevisan, D.1    Lewis, T.M.2
  • 33
    • 0033249371 scopus 로고    scopus 로고
    • Stochastic calculus for Brownian motion in a Brownian fracture
    • KHOSHNEVISAN, D. and LEWIS, T. M. (1999). Stochastic calculus for Brownian motion in a Brownian fracture. Ann. Appl. Probab. 9 629-667.
    • (1999) Ann. Appl. Probab. , vol.9 , pp. 629-667
    • Khoshnevisan, D.1    Lewis, T.M.2
  • 35
    • 84861262412 scopus 로고
    • On a Feyman-Kac type formula
    • (W. Kasprzak and A. Weron, eds.). World Scientific, River Edge, NJ
    • MA̧DRECKI, A. and RYBACZUK, M. (1990). On a Feyman-Kac type formula. In Stochastic Methods in Experimental Sciences (W. Kasprzak and A. Weron, eds.) 312-321. World Scientific, River Edge, NJ.
    • (1990) Stochastic Methods in Experimental Sciences , pp. 312-321
    • Ma̧drecki, A.1    Rybaczuk, M.2
  • 37
    • 0034562634 scopus 로고    scopus 로고
    • On sojourn distributions of processes related to some higher-order heat-type equations
    • NIKITIN, Y. and ORSINGHER, E. (2000). On sojourn distributions of processes related to some higher-order heat-type equations. J. Theoret. Probab. 13 997-1012.
    • (2000) J. Theoret. Probab. , vol.13 , pp. 997-1012
    • Nikitin, Y.1    Orsingher, E.2
  • 38
    • 84972573152 scopus 로고
    • A stochastic solution of a higher order parabolic equation
    • NISHIOKA, K. (1987). A stochastic solution of a higher order parabolic equation. J. Math. Soc. Japan 39 209-231.
    • (1987) J. Math. Soc. Japan , vol.39 , pp. 209-231
    • Nishioka, K.1
  • 39
    • 21344467982 scopus 로고    scopus 로고
    • Monopoles and dipoles in biharmonic pseudo-process
    • NISHIOKA, K. (1996). Monopoles and dipoles in biharmonic pseudo-process. Proc. Japan Acad. Ser. A. Math. Sci. 72 47-50.
    • (1996) Proc. Japan Acad. Ser. A. Math. Sci. , vol.72 , pp. 47-50
    • Nishioka, K.1
  • 40
    • 0037631104 scopus 로고    scopus 로고
    • The first hitting time and place of a half-line by a biharmonic pseudo-process
    • NISHIOKA, K. (1997). The first hitting time and place of a half-line by a biharmonic pseudo-process. Japan. J. Math. 23 235-280.
    • (1997) Japan. J. Math. , vol.23 , pp. 235-280
    • Nishioka, K.1
  • 41
    • 10644283670 scopus 로고    scopus 로고
    • Boundary conditions for one-dimensional biharmonic pseudo process
    • NISHIOKA, K. (2001). Boundary conditions for one-dimensional biharmonic pseudo process. Electron. J. Probab. 6 13.
    • (2001) Electron. J. Probab. , vol.6 , pp. 13
    • Nishioka, K.1
  • 42
    • 0002777997 scopus 로고
    • Random motions governed by third-order equations
    • ORSINGHER, E. (1990). Random motions governed by third-order equations. Adv. in Appl. Probab. 22 915-928.
    • (1990) Adv. in Appl. Probab. , vol.22 , pp. 915-928
    • Orsingher, E.1
  • 43
    • 10644229483 scopus 로고
    • Processes governed by signed measures connected with third-order "heat type" equations
    • ORSINGHER, E. (1991). Processes governed by signed measures connected with third-order "heat type" equations. Lithuanian Math. J. 31 220-231.
    • (1991) Lithuanian Math. J. , vol.31 , pp. 220-231
    • Orsingher, E.1
  • 44
    • 0001701021 scopus 로고    scopus 로고
    • Iterated processes and their applications to higher order ODE's
    • ORSINGHER, E. and ZHAO, X. (1999). Iterated processes and their applications to higher order ODE's. Acta Math. Sinica 15 173-180.
    • (1999) Acta Math. Sinica , vol.15 , pp. 173-180
    • Orsingher, E.1    Zhao, X.2
  • 46
    • 0000975672 scopus 로고
    • Lower limits of iterated Wiener processes
    • SHI, Z. (1995). Lower limits of iterated Wiener processes. Statist. Probab. Lett. 23 259-270.
    • (1995) Statist. Probab. Lett. , vol.23 , pp. 259-270
    • Shi, Z.1
  • 47
    • 26844556532 scopus 로고
    • Probabilistic solution of the Dirichlet problem for biharmonic functions in discrete space
    • VANDERBEI, R. J. (1984). Probabilistic solution of the Dirichlet problem for biharmonic functions in discrete space. Ann. Probab. 12 311-324.
    • (1984) Ann. Probab. , vol.12 , pp. 311-324
    • Vanderbei, R.J.1
  • 48
    • 0032359434 scopus 로고    scopus 로고
    • Local times and related properties of multidimensional iterated Brownian motion
    • XIAO, Y. (1998). Local times and related properties of multidimensional iterated Brownian motion. J. Theoret. Probab. 11 383-408.
    • (1998) J. Theoret. Probab. , vol.11 , pp. 383-408
    • Xiao, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.