메뉴 건너뛰기




Volumn , Issue , 2009, Pages 584-590

Boosting a heterogeneous pool of fast HOG features for pedestrian and sign detection

Author keywords

[No Author keywords available]

Indexed keywords

FEATURE SELECTION; FEATURE SETS; FEATURE SPACE; HETEROGENEOUS FEATURES; HETEROGENEOUS POOLS; MEMORY BANDWIDTHS; MEMORY REQUIREMENTS; PC ARCHITECTURE; PEDESTRIAN DETECTION; ROAD SIGNS; RUNTIMES; SIGN DETECTION; WEAK CLASSIFIERS;

EID: 70449574339     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IVS.2009.5164343     Document Type: Conference Paper
Times cited : (19)

References (21)
  • 6
    • 34548102203 scopus 로고    scopus 로고
    • Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors
    • B. Wu and R. Nevatia, "Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors," International Journal of Computer Vision, 2007.
    • (2007) International Journal of Computer Vision
    • Wu, B.1    Nevatia, R.2
  • 7
    • 34948876368 scopus 로고    scopus 로고
    • Human detection via classification on riemannian manifolds
    • IEEE Computer Society
    • O. Tuzel, F. Porikli, and P. Meer, "Human detection via classification on riemannian manifolds." in CVPR. IEEE Computer Society, 2007.
    • (2007) CVPR
    • Tuzel, O.1    Porikli, F.2    Meer, P.3
  • 10
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting using confidence-rated predictions
    • Online, Available
    • R. E. Schapire and Y. Singer, "Improved boosting using confidence-rated predictions," Machine Learning, vol. 37, no. 3, pp. 297-336, 1999. [Online]. Available: citeseer.ist.psu.edu/article/ singer99improved.html
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 11
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani, "Additive logistic regression: a statistical view of boosting," The Annals of Statistics, vol. 38, no. 2, pp. 337-374, 2000.
    • (2000) The Annals of Statistics , vol.38 , Issue.2 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 12
    • 24644524727 scopus 로고    scopus 로고
    • Waldboost - learning for time constrained sequential detection
    • J. Sochman and J. Matas, "Waldboost - learning for time constrained sequential detection," Computer Vision and Pattern Recognition, vol. 2, pp. 150, 156, 2005.
    • (2005) Computer Vision and Pattern Recognition , vol.2
    • Sochman, J.1    Matas, J.2
  • 15
    • 70449609123 scopus 로고    scopus 로고
    • R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd Edition). Wiley-Interscience, November 2000. [Online]. Available: http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09,20&path=ASIN/ 0471056693
    • R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd Edition). Wiley-Interscience, November 2000. [Online]. Available: http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09,20&path=ASIN/ 0471056693
  • 16
    • 33749237332 scopus 로고    scopus 로고
    • Local Fisher discriminant analysis for supervised dimensionality reduction
    • ACM New York, NY, USA
    • M. Sugiyama, "Local Fisher discriminant analysis for supervised dimensionality reduction," in Proceedings of the 23rd international conference on Machine learning. ACM New York, NY, USA, 2006, pp. 905-912.
    • (2006) Proceedings of the 23rd international conference on Machine learning , pp. 905-912
    • Sugiyama, M.1
  • 19
    • 57749181116 scopus 로고    scopus 로고
    • On the importance of accurate weak classifier learning for boosted weak classifiers
    • June
    • G. Overett and L. Petersson, "On the importance of accurate weak classifier learning for boosted weak classifiers," in IEEE Intelligent Vehicles Symposium (IV2008), June 2008.
    • (2008) IEEE Intelligent Vehicles Symposium (IV2008)
    • Overett, G.1    Petersson, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.