메뉴 건너뛰기




Volumn 38, Issue 1, 2009, Pages 74-84

Comparison of neural network and principal component-regression analysis to predict the solid waste generation in Tehran

Author keywords

Artificial neural network; Multivariable linear regression; Prediction of waste generation; Principle component analysis

Indexed keywords


EID: 67649416269     PISSN: 22516085     EISSN: 22516093     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (81)

References (31)
  • 1
    • 0031106527 scopus 로고    scopus 로고
    • An analysis of recycling impacts on solid waste generation by time series intervention modeling
    • Chang NB, Lin YT (1997). An analysis of recycling impacts on solid waste generation by time series intervention modeling. Resour Conserv Recycl, 19:165-86.
    • (1997) Resour Conserv Recycl , vol.19 , pp. 165-186
    • Chang, N.B.1    Lin, Y.T.2
  • 2
    • 0027275102 scopus 로고
    • Data analysis of daily collection tonnage of residential solid waste in Japan
    • Matsuto T, Tanaka N (1993). Data analysis of daily collection tonnage of residential solid waste in Japan. Waste Manage Res, 11: 333-43.
    • (1993) Waste Manage Res , vol.11 , pp. 333-343
    • Matsuto, T.1    Tanaka, N.2
  • 4
    • 0031081236 scopus 로고    scopus 로고
    • Future waste generation forecast on the basis of a macroeconomic model
    • Bruvoll A, Ibenholt K (1997). Future waste generation forecast on the basis of a macroeconomic model. Resour Conserv Recyc, 19: 137-49.
    • (1997) Resour Conserv Recyc , vol.19 , pp. 137-149
    • Bruvoll, A.1    Ibenholt, K.2
  • 5
    • 0027752456 scopus 로고
    • A forecast model of refuse tonnage with recapture and uncertainty bounds
    • McBean EA, Fortin MHP (1993). A forecast model of refuse tonnage with recapture and uncertainty bounds. Waste Manage Res, 11: 373-85.
    • (1993) Waste Manage Res , vol.11 , pp. 373-385
    • McBean, E.A.1    Fortin, M.H.P.2
  • 6
    • 33646346099 scopus 로고    scopus 로고
    • NN-LEAP: A neural network-based model for controlling leachate flow-rate in a municipal solid waste landfill site
    • Karaca F, Özkaya B (2006). NN-LEAP: A neural network-based model for controlling leachate flow-rate in a municipal solid waste landfill site. Env Model Softw, 21: 1190-97.
    • (2006) Env Model Softw , vol.21 , pp. 1190-1197
    • Karaca, F.1    Özkaya, B.2
  • 7
    • 33745437985 scopus 로고    scopus 로고
    • Prediction for energy content of Taiwan municipal solid waste using multilayer perceptron neural networks
    • Shu HY, Lu HC, Fan HJ, Chang MC, Chen JC (2006). Prediction for energy content of Taiwan municipal solid waste using multilayer perceptron neural networks. J Air Waste Mana Asso, 56: 852-58.
    • (2006) J Air Waste Mana Asso , vol.56 , pp. 852-858
    • Shu, H.Y.1    Lu, H.C.2    Fan, H.J.3    Chang, M.C.4    Chen, J.C.5
  • 8
    • 30744431652 scopus 로고    scopus 로고
    • HCl emission characteristics and BP neural networks prediction in MSW/coal co-fired fluidized beds
    • Chi Y, Wen JM, Zhang DP, Yan JH, Ni MJ, Cen KF (2005). HCl emission characteristics and BP neural networks prediction in MSW/coal co-fired fluidized beds. J Env Sci, 17: 699-704.
    • (2005) J Env Sci , vol.17 , pp. 699-704
    • Chi, Y.1    Wen, J.M.2    Zhang, D.P.3    Yan, J.H.4    Ni, M.J.5    Cen, K.F.6
  • 9
    • 0037063867 scopus 로고    scopus 로고
    • Recycling strategy and a recyclability assessment model based on an artificial neural network
    • Liu ZF, Liu XP, Wang SW, Liu GF (2002). Recycling strategy and a recyclability assessment model based on an artificial neural network. J Mate Proces Tech, 129: 500-506.
    • (2002) J Mate Proces Tech , vol.129 , pp. 500-506
    • Liu, Z.F.1    Liu, X.P.2    Wang, S.W.3    Liu, G.F.4
  • 10
    • 0037218606 scopus 로고    scopus 로고
    • Predicting the heating value of MSW with a feed forward neural network
    • Dong C, Jin B, Li D (2003). Predicting the heating value of MSW with a feed forward neural network. Waste Manag, 23: 103-106.
    • (2003) Waste Manag , vol.23 , pp. 103-106
    • Dong, C.1    Jin, B.2    Li, D.3
  • 11
    • 0024880831 scopus 로고
    • Multilayer feed forward networks are universal approximators
    • Hornik K, Stinchcombe M, White H (1989). Multilayer feed forward networks are universal approximators. Neu Net, 2: 359-66.
    • (1989) Neu Net , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 12
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • Cybenko G (1989). Approximation by superposition of a sigmoidal function. Math. Control Signals Syst, 2: 303-14.
    • (1989) Math. Control Signals Syst , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 13
    • 0000169232 scopus 로고
    • An algorithm for leastsquares estimation of nonlinear parameters
    • Marquardt DW (1963). An algorithm for leastsquares estimation of nonlinear parameters. J Soci Indus Appl Math, 11: 431-41.
    • (1963) J Soci Indus Appl Math , vol.11 , pp. 431-441
    • Marquardt, D.W.1
  • 14
    • 0000873069 scopus 로고
    • A method for the solution of certain non-linear problems in least squares
    • Levenberg K (1944). A method for the solution of certain non-linear problems in least squares. Quart J Appl Math, 2: 164-68.
    • (1944) Quart J Appl Math , vol.2 , pp. 164-168
    • Levenberg, K.1
  • 16
    • 0003271452 scopus 로고
    • Stopped Training and Other Remedies for Over Fitting
    • Proceedings of the 27th Symposium on the Interface of Computing Science and Statistics
    • Sarle WS (1995). Stopped training and other remedies for over fitting. Proceedings of the 27th Symposium on the Interface of Computing Science and Statistics, 352-60.
    • (1995) , pp. 352-360
    • Sarle, W.S.1
  • 18
    • 8844227567 scopus 로고    scopus 로고
    • Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs
    • Camdevyren H, Demyr N, Kanik A, Keskyn S (2005). Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs. Ecol Model, 181: 581-89.
    • (2005) Ecol Model , vol.181 , pp. 581-589
    • Camdevyren, H.1    Demyr, N.2    Kanik, A.3    Keskyn, S.4
  • 19
    • 0041695282 scopus 로고    scopus 로고
    • Using improved neural network to analyze RSP, NOX and NO2 levels in urban air in Mong Kok, Hong Kong
    • Lu WZ, Wang WJ, Wang XK, Xu ZB, Leung AYT (2003). Using improved neural network to analyze RSP, NOX and NO2 levels in urban air in Mong Kok, Hong Kong. Env Monit Asses, 87: 235-54.
    • (2003) Env Monit Asses , vol.87 , pp. 235-254
    • Lu, W.Z.1    Wang, W.J.2    Wang, X.K.3    Xu, Z.B.4    Leung, A.Y.T.5
  • 20
    • 0033992165 scopus 로고    scopus 로고
    • Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis
    • Helena B, Pardo R, Vega M, Barrado E, Fernandez JM, Fernandez L (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Wat Res, 34: 807-16.
    • (2000) Wat Res , vol.34 , pp. 807-816
    • Helena, B.1    Pardo, R.2    Vega, M.3    Barrado, E.4    Fernandez, J.M.5    Fernandez, L.6
  • 24
    • 64049087233 scopus 로고    scopus 로고
    • Comparison of ANN and PCA based multivariate linear regression applied to predict the daily average concentration of CO: A CASE STUDY OF TEHRAN
    • Language: Persian
    • Noori R, Ashrafi K, Ajdarpour A (2008). Comparison of ANN and PCA based multivariate linear regression applied to predict the daily average concentration of CO: A case study of Tehran. J Phy Eart Spac, 34: 135-52 (Language: Persian).
    • (2008) J Phy Eart Spac , vol.34 , pp. 135-152
    • Noori, R.1    Ashrafi, K.2    Ajdarpour, A.3
  • 25
    • 67649417415 scopus 로고    scopus 로고
    • Assessment of importance of water quality monitoring stations using principal component and factor analyses: A case study of the Karoon River
    • Language: Persian
    • Noori R, Kerachian R, Khodadadi A, Shakibayinia A (2007). Assessment of importance of water quality monitoring stations using principal component and factor analyses: a case study of the Karoon River. J Water & Wastewater, 63: 60-9 (Language: Persian).
    • (2007) J Water & Wastewater , vol.63 , pp. 60-69
    • Noori, R.1    Kerachian, R.2    Khodadadi, A.3    Shakibayinia, A.4
  • 28
    • 0037340658 scopus 로고    scopus 로고
    • Comparative analysis of event based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks
    • Jain A, Indurthy SKVP (2003). Comparative analysis of event based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks. J Hydro Eng (ASCE), 8: 93-98.
    • (2003) J Hydro Eng (ASCE) , vol.8 , pp. 93-98
    • Jain, A.1    Indurthy, S.K.V.P.2
  • 29
    • 42449161613 scopus 로고    scopus 로고
    • Prediction of municipal solid waste generation by use of artificial neural network: A case study of Mashhad
    • Jalili M, Noori R (2008). Prediction of municipal solid waste generation by use of artificial neural network: a case study of Mashhad. Inter J Env Rese, 2: 22-33.
    • (2008) Inter J Env Rese , vol.2 , pp. 22-33
    • Jalili, M.1    Noori, R.2
  • 30
    • 67649963608 scopus 로고    scopus 로고
    • Prediction of municipal solid waste generation with combination of support vector machine and principal component analysis: A case study of Mashhad
    • DOI 10.1002/ep
    • Noori R, Abdoli MA, Ameri A, Jalili-Ghazizade M (2008). Prediction of municipal solid waste generation with combination of support vector machine and principal component analysis: a case study of Mashhad. Environmental Progress, DOI 10.1002/ep.
    • (2008) Environmental Progress
    • Noori, R.1    Abdoli, M.A.2    Ameri, A.3    Jalili-Ghazizade, M.4
  • 31
    • 64049092449 scopus 로고    scopus 로고
    • Results uncertainty of solid waste generation forecasting by hybrid of wavelet transform-ANFIS and wavelet transform- neural network
    • DOI 10.1016/j. eswa. 2008.12.035
    • Noori R, Abdoli MA, Farokhnia A, Abbasi M (2009). Results uncertainty of solid waste generation forecasting by hybrid of wavelet transform-ANFIS and wavelet transform- neural network. Expert Systems with Applications. DOI 10.1016/j. eswa. 2008.12.035.
    • (2009) Expert Systems with Applications
    • Noori, R.1    Abdoli, M.A.2    Farokhnia, A.3    Abbasi, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.