메뉴 건너뛰기




Volumn 80, Issue 4, 2009, Pages

Universality in the one-dimensional chain of phase-coupled oscillators

Author keywords

[No Author keywords available]

Indexed keywords

CORRELATION LENGTH SCALE; COUPLING DISTRIBUTION; CRITICAL EXPONENT; FIXED POINTS; LONG TAIL; LOW FREQUENCY; NUMERICAL SIMULATION; ONE-DIMENSIONAL CHAINS; PHASE-COUPLED OSCILLATORS; RANDOMLY DISTRIBUTED; RENORMALIZATION GROUP; SYNCHRONIZED CLUSTERS; UNIVERSAL APPROACH; UNIVERSAL SCALING; UNIVERSALITY CLASS; WEAK RANDOMNESS;

EID: 70449429480     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.80.046210     Document Type: Article
Times cited : (14)

References (20)
  • 8
    • 28844506120 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.72.036217
    • H. Hong, H. Park, and M. Y. Choi, Phys. Rev. E 72, 036217 (2005). 10.1103/PhysRevE.72.036217
    • (2005) Phys. Rev. e , vol.72 , pp. 036217
    • Hong, H.1    Park, H.2    Choi, M.Y.3
  • 12
    • 0000945656 scopus 로고
    • 10.1103/PhysRevLett.61.231
    • H. Daido, Phys. Rev. Lett. 61, 231 (1988). 10.1103/PhysRevLett.61.231
    • (1988) Phys. Rev. Lett. , vol.61 , pp. 231
    • Daido, H.1
  • 13
    • 36149036075 scopus 로고
    • 10.1088/0305-4470/21/13/005
    • S. H. Strogatz and R. E. Mirollo, J. Phys. A 21, L699 (1988). 10.1088/0305-4470/21/13/005
    • (1988) J. Phys. A , vol.21 , pp. 699
    • Strogatz, S.H.1    Mirollo, R.E.2
  • 15
    • 70449456145 scopus 로고    scopus 로고
    • Ph.D. thesis, California Institute of Technology
    • O. Kogan, Ph.D. thesis, California Institute of Technology, 2008.
    • (2008)
    • Kogan, O.1
  • 17
    • 4244143206 scopus 로고
    • 10.1103/PhysRevB.50.3799
    • D. S. Fisher, Phys. Rev. B 50, 3799 (1994). 10.1103/PhysRevB.50.3799
    • (1994) Phys. Rev. B , vol.50 , pp. 3799
    • Fisher, D.S.1
  • 20
    • 70449424579 scopus 로고    scopus 로고
    • By the definition of a center, | Δω | <2E. When a center gets checked for strong coupling decimation, K=E. Thus, r=2 K/ | Δω | >1. Hence, when a center is checked for strong coupling decimation, it will always be decimated as such.
    • By the definition of a center, | Δω | <2E. When a center gets checked for strong coupling decimation, K =E. Thus, r=2 K/ | Δω | >1. Hence, when a center is checked for strong coupling decimation, it will always be decimated as such.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.