메뉴 건너뛰기




Volumn 80, Issue 3, 2009, Pages

Renormalization group approach to oscillator synchronization

Author keywords

[No Author keywords available]

Indexed keywords

CHAIN DYNAMICS; CLUSTER SIZES; COUPLED PHASE OSCILLATORS; COUPLING STRENGTHS; INTRINSIC FREQUENCY; LORENTZIAN DISTRIBUTIONS; NEAREST-NEIGHBORS; NUMERICAL SIMULATION; ONE-DIMENSIONAL CHAINS; RENORMALIZATION GROUP; RENORMALIZATION GROUP APPROACH; RENORMALIZATION GROUP METHODS; STRONG DISORDERS;

EID: 70349899141     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.80.036206     Document Type: Article
Times cited : (18)

References (35)
  • 3
  • 5
    • 0030170515 scopus 로고    scopus 로고
    • 10.1016/0921-4526(96)85057-5
    • K. Wiesenfeld, Physica B 222, 315 (1996). 10.1016/0921-4526(96)85057-5
    • (1996) Physica B , vol.222 , pp. 315
    • Wiesenfeld, K.1
  • 7
  • 12
    • 0035826148 scopus 로고    scopus 로고
    • 10.1038/35065745
    • L. Glass, Nature (London) 410, 277 (2001). 10.1038/35065745
    • (2001) Nature (London) , vol.410 , pp. 277
    • Glass, L.1
  • 13
    • 19944385353 scopus 로고    scopus 로고
    • 10.1103/RevModPhys.77.137
    • J. A. Acebrón, Rev. Mod. Phys. 77, 137 (2005). 10.1103/RevModPhys.77.137
    • (2005) Rev. Mod. Phys. , vol.77 , pp. 137
    • Acebrón, J.A.1
  • 17
    • 33847713733 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.98.104101
    • F. Rogister and R. Roy, Phys. Rev. Lett. 98, 104101 (2007). 10.1103/PhysRevLett.98.104101
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 104101
    • Rogister, F.1    Roy, R.2
  • 18
    • 36149036075 scopus 로고
    • 10.1088/0305-4470/21/13/005
    • S. H. Strogatz and R. E. Mirollo, J. Phys. A 21, L699 (1988). 10.1088/0305-4470/21/13/005
    • (1988) J. Phys. A , vol.21 , pp. 699
    • Strogatz, S.H.1    Mirollo, R.E.2
  • 19
    • 0000559957 scopus 로고
    • 10.1016/0167-2789(88)90074-7
    • S. H. Strogatz and R. E. Mirollo, Physica D 31, 143 (1988). 10.1016/0167-2789(88)90074-7
    • (1988) Physica D , vol.31 , pp. 143
    • Strogatz, S.H.1    Mirollo, R.E.2
  • 20
    • 0000747853 scopus 로고
    • Some progress to understand these clusters, from the point of view of dynamical systems has been attained for certain finite systems by 10.1137/0515019
    • Some progress to understand these clusters, from the point of view of dynamical systems has been attained for certain finite systems by G. B. Ermentrout and N. Kopell, SIAM J. Math. Anal. 15, 215 (1984). 10.1137/0515019
    • (1984) SIAM J. Math. Anal. , vol.15 , pp. 215
    • Ermentrout, G.B.1    Kopell, N.2
  • 22
    • 33646639173 scopus 로고
    • 10.1103/PhysRevB.22.1305
    • C. Dasgupta and S. K. Ma, Phys. Rev. B 22, 1305 (1980). 10.1103/PhysRevB.22.1305
    • (1980) Phys. Rev. B , vol.22 , pp. 1305
    • Dasgupta, C.1    Ma, S.K.2
  • 23
    • 4244143206 scopus 로고
    • 10.1103/PhysRevB.50.3799
    • D. S. Fisher, Phys. Rev. B 50, 3799 (1994). 10.1103/PhysRevB.50.3799
    • (1994) Phys. Rev. B , vol.50 , pp. 3799
    • Fisher, D.S.1
  • 24
    • 0000114421 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.58.9131
    • D. S. Fisher and A. P. Young, Phys. Rev. B 58, 9131 (1998). 10.1103/PhysRevB.58.9131
    • (1998) Phys. Rev. B , vol.58 , pp. 9131
    • Fisher, D.S.1    Young, A.P.2
  • 27
    • 70349964522 scopus 로고    scopus 로고
    • For example, if Kn-1 is negative, we may write Kn-1 sin (θn - θn-1) as | Kn-1 | sin [θn - (θn-1 -π)]. We then redefine all phases θk, k≤n-1, as θk′ = θk -π, thus, getting rid of one negative coupling. We consistently apply this procedure on the entire chain from right to left to gauge away all negative couplings.
    • For example, if Kn-1 is negative, we may write Kn-1 sin (θn - θn-1) as | Kn-1 | sin [θn - (θn-1 -π)]. We then redefine all phases θk, k≤n-1, as θk′ = θk -π, thus, getting rid of one negative coupling. We consistently apply this procedure on the entire chain from right to left to gauge away all negative couplings.
  • 28
    • 70349952233 scopus 로고    scopus 로고
    • Note that it is not the absolute magnitude of Kn that determines whether an oscillator is subjected to this step, but the O (ε) ratios such as ωn / Kn and Kn-1 / Kn: the phase difference between θn and θn+1 can not be assumed to be bounded, even if the coupling Kn between them is very large, when the difference between their intrinsic frequencies or another neighboring Kn is comparably large.
    • Note that it is not the absolute magnitude of Kn that determines whether an oscillator is subjected to this step, but the O (ε) ratios such as ωn / Kn and Kn-1 / Kn: the phase difference between θn and θn+1 can not be assumed to be bounded, even if the coupling Kn between them is very large, when the difference between their intrinsic frequencies or another neighboring Kn is comparably large.
  • 29
    • 70349961611 scopus 로고    scopus 로고
    • Ph.D. thesis, California Institute of Technology
    • O. Kogan, Ph.D. thesis, California Institute of Technology, 2008
    • (2008)
    • Kogan, O.1
  • 30
    • 70349961613 scopus 로고    scopus 로고
    • http://resolver.caltech.edu/CaltechETD:etd-06012009-145134
  • 31
    • 70349967797 scopus 로고    scopus 로고
    • Similarly, it is not the absolute magnitude of ωn that determines whether an oscillator is subjected to this step, but the O (ε) ratios such as Kn-1 / ωn and ωn-1 / ωn: the phase of an oscillator with a large ωn but strongly coupled to a slow neighbor or positioned next to another fast neighbor cannot be assumed to advance freely.
    • Similarly, it is not the absolute magnitude of ωn that determines whether an oscillator is subjected to this step, but the O (ε) ratios such as Kn-1 / ωn and ωn-1 / ωn: the phase of an oscillator with a large ωn but strongly coupled to a slow neighbor or positioned next to another fast neighbor cannot be assumed to advance freely.
  • 32
    • 70349943909 scopus 로고    scopus 로고
    • This should be compared with the strongly disordered spin chain, where an effective interaction between the neighbors is given by eliminating the high-energy spins.
    • This should be compared with the strongly disordered spin chain, where an effective interaction between the neighbors is given by eliminating the high-energy spins.
  • 33
    • 70349954864 scopus 로고    scopus 로고
    • By adding all equations of motion, we can see that ∑ i=1 N mi δ ωi =0; this is just a consequence of the fact that interactions are odd. Moreover, at the level of approximation that we consider, δ ωi =0 for all but the fast oscillator n and its nearest neighbors n-1 and n+2. Hence, mn-1 δ ωn-1 + mn δ ωn + mn+1 δ ωn+1 =0.
    • By adding all equations of motion, we can see that ∑ i=1 N mi δ ωi =0; this is just a consequence of the fact that interactions are odd. Moreover, at the level of approximation that we consider, δ ωi =0 for all but the fast oscillator n and its nearest neighbors n-1 and n+2. Hence, mn-1 δ ωn-1 + mn δ ωn + mn+1 δ ωn+1 =0.
  • 35
    • 0000945656 scopus 로고
    • 10.1103/PhysRevLett.61.231
    • H. Daido, Phys. Rev. Lett. 61, 231 (1988). 10.1103/PhysRevLett.61.231
    • (1988) Phys. Rev. Lett. , vol.61 , pp. 231
    • Daido, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.