-
2
-
-
0035318822
-
-
10.1038/35067550
-
F. Varela, J. P. Lachaux, E. Rodriguez, and J. Martinerie, Nat. Rev. Neurosci. 2, 229 (2001). 10.1038/35067550
-
(2001)
Nat. Rev. Neurosci.
, vol.2
, pp. 229
-
-
Varela, F.1
Lachaux, J.P.2
Rodriguez, E.3
Martinerie, J.4
-
4
-
-
33751275508
-
-
10.1103/RevModPhys.78.1213
-
M. Rabinovich, P. Varona, A. Selverston, and H. Abarbanel, Rev. Mod. Phys. 78, 1213 (2006). 10.1103/RevModPhys.78.1213
-
(2006)
Rev. Mod. Phys.
, vol.78
, pp. 1213
-
-
Rabinovich, M.1
Varona, P.2
Selverston, A.3
Abarbanel, H.4
-
5
-
-
0030170515
-
-
10.1016/0921-4526(96)85057-5
-
K. Wiesenfeld, Physica B 222, 315 (1996). 10.1016/0921-4526(96)85057-5
-
(1996)
Physica B
, vol.222
, pp. 315
-
-
Wiesenfeld, K.1
-
12
-
-
0035826148
-
-
10.1038/35065745
-
L. Glass, Nature (London) 410, 277 (2001). 10.1038/35065745
-
(2001)
Nature (London)
, vol.410
, pp. 277
-
-
Glass, L.1
-
13
-
-
19944385353
-
-
10.1103/RevModPhys.77.137
-
J. A. Acebrón, Rev. Mod. Phys. 77, 137 (2005). 10.1103/RevModPhys.77.137
-
(2005)
Rev. Mod. Phys.
, vol.77
, pp. 137
-
-
Acebrón, J.A.1
-
14
-
-
70349950586
-
-
Lecture Notes in Physics No. 39, edited by H. Araki (Springer, New York
-
Y. Kuramoto, in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics No. 39, edited by, H. Araki, (Springer, New York, 1975), Vol. 420.
-
(1975)
International Symposium on Mathematical Problems in Theoretical Physics
, vol.420
-
-
Kuramoto, Y.1
-
17
-
-
33847713733
-
-
10.1103/PhysRevLett.98.104101
-
F. Rogister and R. Roy, Phys. Rev. Lett. 98, 104101 (2007). 10.1103/PhysRevLett.98.104101
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 104101
-
-
Rogister, F.1
Roy, R.2
-
18
-
-
36149036075
-
-
10.1088/0305-4470/21/13/005
-
S. H. Strogatz and R. E. Mirollo, J. Phys. A 21, L699 (1988). 10.1088/0305-4470/21/13/005
-
(1988)
J. Phys. A
, vol.21
, pp. 699
-
-
Strogatz, S.H.1
Mirollo, R.E.2
-
19
-
-
0000559957
-
-
10.1016/0167-2789(88)90074-7
-
S. H. Strogatz and R. E. Mirollo, Physica D 31, 143 (1988). 10.1016/0167-2789(88)90074-7
-
(1988)
Physica D
, vol.31
, pp. 143
-
-
Strogatz, S.H.1
Mirollo, R.E.2
-
20
-
-
0000747853
-
-
Some progress to understand these clusters, from the point of view of dynamical systems has been attained for certain finite systems by 10.1137/0515019
-
Some progress to understand these clusters, from the point of view of dynamical systems has been attained for certain finite systems by G. B. Ermentrout and N. Kopell, SIAM J. Math. Anal. 15, 215 (1984). 10.1137/0515019
-
(1984)
SIAM J. Math. Anal.
, vol.15
, pp. 215
-
-
Ermentrout, G.B.1
Kopell, N.2
-
22
-
-
33646639173
-
-
10.1103/PhysRevB.22.1305
-
C. Dasgupta and S. K. Ma, Phys. Rev. B 22, 1305 (1980). 10.1103/PhysRevB.22.1305
-
(1980)
Phys. Rev. B
, vol.22
, pp. 1305
-
-
Dasgupta, C.1
Ma, S.K.2
-
23
-
-
4244143206
-
-
10.1103/PhysRevB.50.3799
-
D. S. Fisher, Phys. Rev. B 50, 3799 (1994). 10.1103/PhysRevB.50.3799
-
(1994)
Phys. Rev. B
, vol.50
, pp. 3799
-
-
Fisher, D.S.1
-
24
-
-
0000114421
-
-
10.1103/PhysRevB.58.9131
-
D. S. Fisher and A. P. Young, Phys. Rev. B 58, 9131 (1998). 10.1103/PhysRevB.58.9131
-
(1998)
Phys. Rev. B
, vol.58
, pp. 9131
-
-
Fisher, D.S.1
Young, A.P.2
-
25
-
-
19644400596
-
-
10.1103/PhysRevLett.93.150402
-
E. Altman, Y. Kafri, A. Polkovnikov, and G. Refael, Phys. Rev. Lett. 93, 150402 (2004). 10.1103/PhysRevLett.93.150402
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 150402
-
-
Altman, E.1
Kafri, Y.2
Polkovnikov, A.3
Refael, G.4
-
26
-
-
43049144968
-
-
10.1103/PhysRevLett.100.170402
-
E. Altman, Y. Kafri, A. Polkovnikov, and G. Refael, Phys. Rev. Lett. 100, 170402 (2008). 10.1103/PhysRevLett.100.170402
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 170402
-
-
Altman, E.1
Kafri, Y.2
Polkovnikov, A.3
Refael, G.4
-
27
-
-
70349964522
-
-
For example, if Kn-1 is negative, we may write Kn-1 sin (θn - θn-1) as | Kn-1 | sin [θn - (θn-1 -π)]. We then redefine all phases θk, k≤n-1, as θk′ = θk -π, thus, getting rid of one negative coupling. We consistently apply this procedure on the entire chain from right to left to gauge away all negative couplings.
-
For example, if Kn-1 is negative, we may write Kn-1 sin (θn - θn-1) as | Kn-1 | sin [θn - (θn-1 -π)]. We then redefine all phases θk, k≤n-1, as θk′ = θk -π, thus, getting rid of one negative coupling. We consistently apply this procedure on the entire chain from right to left to gauge away all negative couplings.
-
-
-
-
28
-
-
70349952233
-
-
Note that it is not the absolute magnitude of Kn that determines whether an oscillator is subjected to this step, but the O (ε) ratios such as ωn / Kn and Kn-1 / Kn: the phase difference between θn and θn+1 can not be assumed to be bounded, even if the coupling Kn between them is very large, when the difference between their intrinsic frequencies or another neighboring Kn is comparably large.
-
Note that it is not the absolute magnitude of Kn that determines whether an oscillator is subjected to this step, but the O (ε) ratios such as ωn / Kn and Kn-1 / Kn: the phase difference between θn and θn+1 can not be assumed to be bounded, even if the coupling Kn between them is very large, when the difference between their intrinsic frequencies or another neighboring Kn is comparably large.
-
-
-
-
29
-
-
70349961611
-
-
Ph.D. thesis, California Institute of Technology
-
O. Kogan, Ph.D. thesis, California Institute of Technology, 2008
-
(2008)
-
-
Kogan, O.1
-
30
-
-
70349961613
-
-
http://resolver.caltech.edu/CaltechETD:etd-06012009-145134
-
-
-
-
31
-
-
70349967797
-
-
Similarly, it is not the absolute magnitude of ωn that determines whether an oscillator is subjected to this step, but the O (ε) ratios such as Kn-1 / ωn and ωn-1 / ωn: the phase of an oscillator with a large ωn but strongly coupled to a slow neighbor or positioned next to another fast neighbor cannot be assumed to advance freely.
-
Similarly, it is not the absolute magnitude of ωn that determines whether an oscillator is subjected to this step, but the O (ε) ratios such as Kn-1 / ωn and ωn-1 / ωn: the phase of an oscillator with a large ωn but strongly coupled to a slow neighbor or positioned next to another fast neighbor cannot be assumed to advance freely.
-
-
-
-
32
-
-
70349943909
-
-
This should be compared with the strongly disordered spin chain, where an effective interaction between the neighbors is given by eliminating the high-energy spins.
-
This should be compared with the strongly disordered spin chain, where an effective interaction between the neighbors is given by eliminating the high-energy spins.
-
-
-
-
33
-
-
70349954864
-
-
By adding all equations of motion, we can see that ∑ i=1 N mi δ ωi =0; this is just a consequence of the fact that interactions are odd. Moreover, at the level of approximation that we consider, δ ωi =0 for all but the fast oscillator n and its nearest neighbors n-1 and n+2. Hence, mn-1 δ ωn-1 + mn δ ωn + mn+1 δ ωn+1 =0.
-
By adding all equations of motion, we can see that ∑ i=1 N mi δ ωi =0; this is just a consequence of the fact that interactions are odd. Moreover, at the level of approximation that we consider, δ ωi =0 for all but the fast oscillator n and its nearest neighbors n-1 and n+2. Hence, mn-1 δ ωn-1 + mn δ ωn + mn+1 δ ωn+1 =0.
-
-
-
-
35
-
-
0000945656
-
-
10.1103/PhysRevLett.61.231
-
H. Daido, Phys. Rev. Lett. 61, 231 (1988). 10.1103/PhysRevLett.61.231
-
(1988)
Phys. Rev. Lett.
, vol.61
, pp. 231
-
-
Daido, H.1
|