메뉴 건너뛰기




Volumn 21, Issue 7, 2009, Pages 925-942

Estimating spatial covariance using penalised likelihood with weighted L1 penalty

Author keywords

Cholesky decomposition; Gaussian Markov random fields; LASSO; Maximum likelihood; Nonstationarity

Indexed keywords


EID: 70449359522     PISSN: 10485252     EISSN: 10290311     Source Type: Journal    
DOI: 10.1080/10485250903023632     Document Type: Article
Times cited : (17)

References (35)
  • 1
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • O. Banerjee, L.E. Ghaoui, and A. d'Aspremont, Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data, J. Mach. Learn. Res. 9 (2008), pp. 485-516.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 485-516
    • Banerjee, O.1    Ghaoui, L.E.2    D'aspremont, A.3
  • 3
    • 38049038474 scopus 로고    scopus 로고
    • Variable smoothing in Bayesian intrinsic autoregressions
    • M. Brewer and A. Nolan, Variable smoothing in Bayesian intrinsic autoregressions, Environmetrics, 18 (2007), pp. 841-857.
    • (2007) Environmetrics , vol.18 , pp. 841-857
    • Brewer, M.1    Nolan, A.2
  • 5
    • 33644986127 scopus 로고    scopus 로고
    • Covariance selection and estimation via penalised normal likelihood
    • J.Z. Huang, N. Liu, M. Pourahmadi, and L. Liu, Covariance selection and estimation via penalised normal likelihood, Biometrika 93 (2006), pp. 85-98.
    • (2006) Biometrika , vol.93 , pp. 85-98
    • Huang, J.Z.1    Liu, N.2    Pourahmadi, M.3    Liu, L.4
  • 6
    • 62349114549 scopus 로고    scopus 로고
    • Sparse estimation of large covariance matrices via a hierarchical lasso penalty
    • L. Levina, A. Rothman, and J. Zhu, Sparse estimation of large covariance matrices via a hierarchical lasso penalty, Ann. Appl. Stat. 2 (2008), pp. 245-263.
    • (2008) Ann. Appl. Stat. , vol.2 , pp. 245-263
    • Levina, L.1    Rothman, A.2    Zhu, J.3
  • 8
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • Meinshusen, and P. Buhlmann, High-dimensional graphs and variable selection with the Lasso, Ann. Stat. 34 (2006), pp. 1436-1462.
    • (2006) Ann. Stat. , vol.34 , pp. 1436-1462
    • Meinshusen1    Buhlmann, P.2
  • 10
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • M. Yuan and Y. Lin, Model selection and estimation in the Gaussian graphical model, Biometrika 94 (2007), pp. 19-35.
    • (2007) Biometrika , vol.94 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 11
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • J. Fan, and R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, J. Am. Statist. Assoc. 96 (2001), pp. 1348-1360.
    • (2001) J. Am. Statist. Assoc. , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 12
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B, 58 (1996), pp. 267-288.
    • (1996) J. R. Stat. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 13
    • 34548151636 scopus 로고    scopus 로고
    • Adaptive lasso for Cox's proportional hazards model
    • H.H. Zhang and W. Lu, Adaptive lasso for Cox's proportional hazards model, Biometrika 94 (2007), pp. 691-703.
    • (2007) Biometrika , vol.94 , pp. 691-703
    • Zhang, H.H.1    Lu, W.2
  • 14
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive Lasso and its oracle properties
    • H. Zou, The adaptive Lasso and its oracle properties, J. Am. Stat. Assoc. 101 (2006), pp. 1418-1429.
    • (2006) J. Am. Stat. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 15
    • 0012806293 scopus 로고    scopus 로고
    • Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation
    • M. Pourahmadi, Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation, Biometrika, 86 (1999), pp. 677-690.
    • (1999) Biometrika , vol.86 , pp. 677-690
    • Pourahmadi, M.1
  • 17
    • 0001760833 scopus 로고
    • On stationary processes in the plane
    • P. Whittle, On stationary processes in the plane, Biometrika 41 (1954), pp. 434-449.
    • (1954) Biometrika , vol.41 , pp. 434-449
    • Whittle, P.1
  • 18
    • 8344266845 scopus 로고    scopus 로고
    • Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models
    • L.F. Lee, Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models, Econometrica, 72 (2004), pp. 1899-1925.
    • (2004) Econometrica , vol.72 , pp. 1899-1925
    • Lee, L.F.1
  • 19
    • 84950640386 scopus 로고
    • Estimation methods for models of spatial interaction
    • K. Ord, Estimation methods for models of spatial interaction, J. Am. Stat. Assoc. 70 (1975), pp. 120-126.
    • (1975) J. Am. Stat. Assoc. , vol.70 , pp. 120-126
    • Ord, K.1
  • 20
    • 0034746220 scopus 로고    scopus 로고
    • Fast maximum likelihood estimation of very large spatial autoregressive models: A characteristic polynomial approach
    • O. Smirnov and L. Anselin, Fast maximum likelihood estimation of very large spatial autoregressive models: A characteristic polynomial approach, Comput. Stat. Data Anal. 35 (2001), pp. 301-319.
    • (2001) Comput. Stat. Data Anal. , vol.35 , pp. 301-319
    • Smirnov, O.1    Anselin, L.2
  • 23
    • 77957180267 scopus 로고
    • Computing Dirichlet Tessellations in the Plane
    • P.J. Green and R. Sibson, Computing Dirichlet Tessellations in the Plane, Comput. J. 21 (1978), pp. 168-173.
    • (1978) Comput. J. , vol.21 , pp. 168-173
    • Green, P.J.1    Sibson, R.2
  • 25
    • 0016881473 scopus 로고
    • The NP-Completeness of the Bandwidth Minimization Problem
    • C.H. Papadimitriou, The NP-Completeness of the Bandwidth Minimization Problem, Computing 16 (1976), pp. 263-270.
    • (1976) Computing , vol.16 , pp. 263-270
    • Papadimitriou, C.H.1
  • 26
    • 0002463920 scopus 로고
    • Computing the minimum fill-in is NP-complete
    • M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Algebr. Discrete Methods 2 (1981), pp. 77-79.
    • (1981) SIAM J. Algebr. Discrete Methods , vol.2 , pp. 77-79
    • Yannakakis, M.1
  • 27
    • 34548452938 scopus 로고    scopus 로고
    • Piecewise linear regularized solution paths
    • S. Rosset and J. Zhu, Piecewise linear regularized solution paths, Ann. Stat. 35 (2007), pp. 1012-1030.
    • (2007) Ann. Stat. , vol.35 , pp. 1012-1030
    • Rosset, S.1    Zhu, J.2
  • 29
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for lasso-type estimators
    • K. Knight and W.J. Fu, Asymptotics for lasso-type estimators, Ann. Stat. 28 (2000), pp. 1356-1378.
    • (2000) Ann. Stat. , vol.28 , pp. 1356-1378
    • Knight, K.1    Fu, W.J.2
  • 32
    • 0036522614 scopus 로고    scopus 로고
    • Fitting Gaussian Markov random fields to Gaussian fields
    • H. Rue, and H. Tjelmeland, Fitting Gaussian Markov random fields to Gaussian fields, Scand. J. Stat. 29 (2002), pp. 31-49.
    • (2002) Scand. J. Stat. , vol.29 , pp. 31-49
    • Rue, H.1    Tjelmeland, H.2
  • 33
    • 14944368724 scopus 로고    scopus 로고
    • Estimation of nonstationary spatial covariance structure
    • D.J. Nott and W.T.M. Dunsmuir, Estimation of nonstationary spatial covariance structure, Biometrika 89 (2002), pp. 819-829.
    • (2002) Biometrika , vol.89 , pp. 819-829
    • Nott, D.J.1    Dunsmuir, W.T.M.2
  • 34
  • 35
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance estimation with the graphical lasso, Biostatistics 9 (2008), pp. 432-441.
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.