메뉴 건너뛰기




Volumn , Issue , 2009, Pages 76-79

Convergence of a gradient algorithm with penalty for training two-layer neural networks

Author keywords

[No Author keywords available]

Indexed keywords

BOUNDEDNESS; CONVERGENCE THEOREM; ERROR FUNCTION; GRADIENT ALGORITHM; GRADIENT LEARNING ALGORITHM; LINEARLY SEPARABLE; NUMERICAL EXPERIMENTS; PENALTY TERM; SIMULATION RESULT; TWO LAYERS;

EID: 70449130025     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCSIT.2009.5234616     Document Type: Conference Paper
Times cited : (6)

References (14)
  • 3
    • 0036644480 scopus 로고    scopus 로고
    • Deterministic convergence of an online gradient method for neural networks
    • W. Wu and Y. S. Xu, Deterministic convergence of an online gradient method for neural networks. Journal of Computational and Applied Mathematics, vol. 144(1-2), pp. 335-347, 2002.
    • (2002) Journal of Computational and Applied Mathematics , vol.144 , Issue.1-2 , pp. 335-347
    • Wu, W.1    Xu, Y.S.2
  • 4
    • 33644892170 scopus 로고    scopus 로고
    • Convergence of gradient method with momentum for two-Layer feedforward neural networks
    • N. M. Zhang, W. Wu and G. F. Zheng, Convergence of gradient method with momentum for two-Layer feedforward neural networks. IEEE Trans. Neural Networks, vol. 17(2), pp. 522-525, 2006.
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.2 , pp. 522-525
    • Zhang, N.M.1    Wu, W.2    Zheng, G.F.3
  • 5
    • 34547738577 scopus 로고    scopus 로고
    • Convergence of batch gradient algorithm for feedforward neural network training
    • H. M. Shao, W. Wu, F. Li and G. F. Zheng, Convergence of batch gradient algorithm for feedforward neural network training. Journal of Information and Computational Science, vol. 4(1), pp. 251-255, 2007.
    • (2007) Journal of Information and Computational Science , vol.4 , Issue.1 , pp. 251-255
    • Shao, H.M.1    Wu, W.2    Li, F.3    Zheng, G.F.4
  • 6
    • 0027662338 scopus 로고
    • Pruning algorithms-a survey
    • R. Reed, Pruning algorithms-a survey. IEEE Trans. Neural Networks, vol. 4(5), pp. 740-747, 1993.
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.5 , pp. 740-747
    • Reed, R.1
  • 7
    • 0030121244 scopus 로고
    • Advances in feedforward neural networks: Demystifying knowledge acquiring black boxes
    • C. G. Looney, Advances in feedforward neural networks: demystifying knowledge acquiring black boxes. IEEE Trans. Knowledge and Data Engineering, vol. 8, pp. 465-493, 1992.
    • (1992) IEEE Trans. Knowledge and Data Engineering , vol.8 , pp. 465-493
    • Looney, C.G.1
  • 8
    • 0030633575 scopus 로고    scopus 로고
    • A penalty-function approach for pruning feedforward neural networks
    • R. Setiono, A penalty-function approach for pruning feedforward neural networks. Neural Computation, vol. 9, pp. 185-204, 1997.
    • (1997) Neural Computation , vol.9 , pp. 185-204
    • Setiono, R.1
  • 9
    • 0026267810 scopus 로고
    • Generalization by weight-elimination applied to currency exchange rate prediction
    • Singapore, pp
    • A. S. Weigend, D. E. Rumelhart and B. A. Huberman, Generalization by weight-elimination applied to currency exchange rate prediction. Int. Conf. on Neural Networks, Singapore, pp. 2374-2379, 1991.
    • (1991) Int. Conf. on Neural Networks , pp. 2374-2379
    • Weigend, A.S.1    Rumelhart, D.E.2    Huberman, B.A.3
  • 10
    • 0024732792 scopus 로고
    • Connectionist learning procedures
    • G. E. Hinton, Connectionist learning procedures. Artificial Intelligence, vol. 40, pp. 185-234, 1989.
    • (1989) Artificial Intelligence , vol.40 , pp. 185-234
    • Hinton, G.E.1
  • 11
    • 0030130724 scopus 로고    scopus 로고
    • Structual learning with forgetting
    • M. Ishikawa, Structual learning with forgetting. Neural Networks, vol. 9(3), pp. 509-521, 1996.
    • (1996) Neural Networks , vol.9 , Issue.3 , pp. 509-521
    • Ishikawa, M.1
  • 12
    • 0035100447 scopus 로고    scopus 로고
    • Improving neural network training solutions using regularisation
    • S. F. McLoone and G. W. Irwin, Improving neural network training solutions using regularisation. Neurocomputing, vol. 37, pp. 71-90, 2001.
    • (2001) Neurocomputing , vol.37 , pp. 71-90
    • McLoone, S.F.1    Irwin, G.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.