메뉴 건너뛰기




Volumn 25, Issue 5, 2009, Pages 769-776

Digital microscopic imaging for citrus peel disease classification using color texture features

Author keywords

Citrus; Color co occurrence method; Discriminate classification; Disease control; Microscope; Texture feature

Indexed keywords

A-STABILITY; CITRUS; CITRUS PEEL; CLASSIFICATION ACCURACY; CLASSIFICATION MODELS; COLOR CO-OCCURRENCE METHOD; COLOR TEXTURE FEATURES; DATA SETS; DIGITAL MICROSCOPES; DISCRIMINATE CLASSIFICATION; DISEASE CLASSIFICATION; ECONOMIC LOSS; FEATURE MODELS; FLORIDA; FRUIT QUALITY; INSECT DAMAGE; MACHINE VISION; MICROSCOPIC IMAGE; MICROSCOPIC IMAGING; REGION-OF-INTEREST IMAGES; RGB IMAGES; STANDARD DEVIATION; STEPWISE DISCRIMINANT ANALYSIS; TEXTURE FEATURE; TEXTURE FEATURES; TIMELY IDENTIFICATION; TRAINING AND TESTING;

EID: 70350751322     PISSN: 08838542     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (22)

References (20)
  • 1
    • 0036220619 scopus 로고    scopus 로고
    • Multispectral inspection of citrus in real-time using machine vision and digital signal processors
    • Aleixos, N., J. Blasco, F. Navarron, and E. Molto. 2002. Multispectral inspection of citrus in real-time using machine vision and digital signal processors. Comput. Electron. Agric. 33(2): 121-137.
    • (2002) Comput. Electron. Agric , vol.33 , Issue.2 , pp. 121-137
    • Aleixos, N.1    Blasco, J.2    Navarron, F.3    Molto, E.4
  • 2
    • 34447278148 scopus 로고    scopus 로고
    • Citrus sorting by identification of the most common defects using multispectral computer vision
    • Blasco, J., N. Aleixos, J. Gomez, and E. Molto. 2007. Citrus sorting by identification of the most common defects using multispectral computer vision. J. Food Eng. 83(3): 384-393.
    • (2007) J. Food Eng , vol.83 , Issue.3 , pp. 384-393
    • Blasco, J.1    Aleixos, N.2    Gomez, J.3    Molto, E.4
  • 3
    • 0034163651 scopus 로고    scopus 로고
    • Classification of weed species using color texture features and discriminant analysis
    • Burks, T. F., S. A. Shearer, and F. A. Payne. 2000. Classification of weed species using color texture features and discriminant analysis. Trans. ASABE 43(2): 441-448.
    • (2000) Trans. ASABE , vol.43 , Issue.2 , pp. 441-448
    • Burks, T.F.1    Shearer, S.A.2    Payne, F.A.3
  • 4
    • 0032051892 scopus 로고    scopus 로고
    • Concepts in imaging and microscopy: Color image processing for microscopy
    • Castleman, K. R. 1998. Concepts in imaging and microscopy: Color image processing for microscopy. Biol. Bull. 194(2): 100-107.
    • (1998) Biol. Bull , vol.194 , Issue.2 , pp. 100-107
    • Castleman, K.R.1
  • 5
    • 33947322691 scopus 로고    scopus 로고
    • Classification of lamb carcass using machine vision: Comparison of statistical and neural network analyses
    • Chandraratne, M. R., D. Kulasiri, and S. Samarasinghe. 2007. Classification of lamb carcass using machine vision: Comparison of statistical and neural network analyses. J. Food Eng. 82(1): 26-34.
    • (2007) J. Food Eng , vol.82 , Issue.1 , pp. 26-34
    • Chandraratne, M.R.1    Kulasiri, D.2    Samarasinghe, S.3
  • 6
    • 28944450675 scopus 로고
    • Citrus blight assessment using a microcomputer: Quantifying damage using an apple computer to solve reflectance spectra of entire trees
    • Edwards, J. G., and C. H. Sweet. 1986. Citrus blight assessment using a microcomputer: quantifying damage using an apple computer to solve reflectance spectra of entire trees. Fla. Sci. 49(1): 48-53.
    • (1986) Fla. Sci , vol.49 , Issue.1 , pp. 48-53
    • Edwards, J.G.1    Sweet, C.H.2
  • 8
    • 70350759787 scopus 로고    scopus 로고
    • FDACS. 2008. Florida agriculture statistical highlights. DACS-P-00054. Tallahassee, Fla.: Florida Department of Agriculture and Consumer Services.
    • FDACS. 2008. Florida agriculture statistical highlights. DACS-P-00054. Tallahassee, Fla.: Florida Department of Agriculture and Consumer Services.
  • 9
    • 0015602894 scopus 로고
    • Reflectance properties of citrus fruits
    • Gaffney, J. J. 1973. Reflectance properties of citrus fruits. Trans. ASAE 16(2): 310-314.
    • (1973) Trans. ASAE , vol.16 , Issue.2 , pp. 310-314
    • Gaffney, J.J.1
  • 11
    • 9244251098 scopus 로고    scopus 로고
    • Comparison of artificial neural networks and statistical classifiers in apple sorting using textural features
    • Kavdir, I., and D. E. Guyer. 2004. Comparison of artificial neural networks and statistical classifiers in apple sorting using textural features. Biosyst. Eng. 89(3): 331-344.
    • (2004) Biosyst. Eng , vol.89 , Issue.3 , pp. 331-344
    • Kavdir, I.1    Guyer, D.E.2
  • 12
    • 0035606923 scopus 로고    scopus 로고
    • Classification of tough and tender beef by image texture analysis
    • Li, J., J. Tan, and P. Shatadal. 2001. Classification of tough and tender beef by image texture analysis. Meat Sci. 57(4): 341-346.
    • (2001) Meat Sci , vol.57 , Issue.4 , pp. 341-346
    • Li, J.1    Tan, J.2    Shatadal, P.3
  • 13
    • 0035467097 scopus 로고    scopus 로고
    • Multiple feature analysis for machine vision grading of Florida citrus
    • Miller, W. M., and G. P. Drouillard. 2001. Multiple feature analysis for machine vision grading of Florida citrus. Applied Eng. Agric. 17(5): 627-633.
    • (2001) Applied Eng. Agric , vol.17 , Issue.5 , pp. 627-633
    • Miller, W.M.1    Drouillard, G.P.2
  • 14
    • 0000979882 scopus 로고    scopus 로고
    • Co-occurrence matrix texture features of multi-spectral images on poultry carcasses
    • Park, B., and Y. R. Chen. 2001. Co-occurrence matrix texture features of multi-spectral images on poultry carcasses. J. Agric. Eng. Res. 78(2): 127-139.
    • (2001) J. Agric. Eng. Res , vol.78 , Issue.2 , pp. 127-139
    • Park, B.1    Chen, Y.R.2
  • 15
    • 33646118990 scopus 로고    scopus 로고
    • Identification of citrus disease using color texture features and discriminant analysis
    • Pydipati, R., T. F. Burks, and W. S. Lee. 2006. Identification of citrus disease using color texture features and discriminant analysis. Comput. Electron. Agric. 52(1-2): 49-59.
    • (2006) Comput. Electron. Agric , vol.52 , Issue.1-2 , pp. 49-59
    • Pydipati, R.1    Burks, T.F.2    Lee, W.S.3
  • 16
    • 70350754467 scopus 로고    scopus 로고
    • Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classification method
    • Qin, J., T. F. Burks, M. S. Kim, K. Chao, and M. A. Ritenour. 2008. Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classification method. Sens. & Instrumen. Food Qual. 2(3): 168-177.
    • (2008) Sens. & Instrumen. Food Qual , vol.2 , Issue.3 , pp. 168-177
    • Qin, J.1    Burks, T.F.2    Kim, M.S.3    Chao, K.4    Ritenour, M.A.5
  • 18
    • 70350764973 scopus 로고    scopus 로고
    • SAS. 2004. SAS/STAT 9.1 User's Guide. Cary, N.C.: SAS Institute, Inc.
    • SAS. 2004. SAS/STAT 9.1 User's Guide. Cary, N.C.: SAS Institute, Inc.
  • 19
    • 0025511038 scopus 로고
    • Plant identification using color co-occurrence matrices
    • Shearer, S. A., and R. G. Holmes. 1990. Plant identification using color co-occurrence matrices. Trans. ASAE 33(6): 2037-2044.
    • (1990) Trans. ASAE , vol.33 , Issue.6 , pp. 2037-2044
    • Shearer, S.A.1    Holmes, R.G.2
  • 20
    • 0035410483 scopus 로고    scopus 로고
    • Development of a distance diagnostic and identification system for plant, insect, and disease problems
    • Xin, J., H. W. Beck, L. A. Halsey, J. H. Fletcher, F. S. Zazueta, and T. Momol. 2001. Development of a distance diagnostic and identification system for plant, insect, and disease problems. Applied Eng. Agric. 17(4): 561-565.
    • (2001) Applied Eng. Agric , vol.17 , Issue.4 , pp. 561-565
    • Xin, J.1    Beck, H.W.2    Halsey, L.A.3    Fletcher, J.H.4    Zazueta, F.S.5    Momol, T.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.