메뉴 건너뛰기




Volumn 19, Issue 4, 2000, Pages 56-62

Automated discovery of positive and negative knowledge in clinical databases: A rule-induction method based on rough-set models that more closely represents medical experts' reasoning

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATED KNOWLEDGE DISCOVERY; MEDICAL REASONING; ROUGH SET MODELS; RULE INDUCTION METHODS;

EID: 0034234307     PISSN: 07395175     EISSN: None     Source Type: Journal    
DOI: 10.1109/51.853482     Document Type: Review
Times cited : (60)

References (15)
  • 1
    • 85005299854 scopus 로고
    • The multi-purpose incremental learning system AQ15 and its testing application to three medical domains
    • Michalski RS, Mozetic I, Hong J, and Lavrac N: The multi-purpose incremental learning system AQ15 and its testing application to three medical domains. Proc 5th Nat Conf Artificial Intelligence, 1986, pp. 1041-1045.
    • (1986) Proc 5th Nat Conf Artificial Intelligence , pp. 1041-1045
    • Michalski, R.S.1    Mozetic, I.2    Hong, J.3    Lavrac, N.4
  • 4
    • 85173861829 scopus 로고    scopus 로고
    • Automated discovery of medical expert system rules from clinical databases based on rough sets
    • Tsumoto S and Tanaka H: Automated discovery of medical expert system rules from clinical databases based on rough sets. In: Proc 2nd Int Conf Knowledge Discovery and Data Mining, 1996, pp. 63-69.
    • (1996) Proc 2nd Int Conf Knowledge Discovery and Data Mining , pp. 63-69
    • Tsumoto, S.1    Tanaka, H.2
  • 5
    • 84947778799 scopus 로고    scopus 로고
    • Modelling medical diagnostic rules based on rough sets
    • Polkowski L and Skowron A (Eds): Heidelberg, Germany: Springer-Verlag
    • Tsumoto S: Modelling medical diagnostic rules based on rough sets. In: Polkowski L and Skowron A (Eds): Rough Sets and Current Trends in Computing (Lecture Notes in Artificial Intelligence). Heidelberg, Germany: Springer-Verlag, pp. 475-489, 1998.
    • (1998) Rough Sets and Current Trends in Computing (Lecture Notes in Artificial Intelligence) , pp. 475-489
    • Tsumoto, S.1
  • 6
    • 0002580328 scopus 로고
    • From rough set theory to evidence theory
    • Yager R, Fedrizzi M. and Kacprzyk J (Eds.) New York: Wiley
    • Skowron, A and Grzymala-Busse J: From rough set theory to evidence theory. In: Yager R, Fedrizzi M. and Kacprzyk J (Eds.) Advances in the Dempsler-Shafer Theory of Evidence. New York: Wiley, pp. 193-236, 1994.
    • (1994) Advances in the Dempsler-Shafer Theory of Evidence , pp. 193-236
    • Skowron, A.1    Grzymala-Busse, J.2
  • 9
    • 0027543613 scopus 로고
    • Variable precision rough set model
    • Ziarko W: Variable precision rough set model. J Comp and Syst Sci 46: 39-59, 1993.
    • (1993) J Comp and Syst Sci , vol.46 , pp. 39-59
    • Ziarko, W.1
  • 13
    • 0032291072 scopus 로고    scopus 로고
    • Automated extraction of medical expert system rules from clinical databases based on rough set theory
    • Tsumoto S: Automated extraction of medical expert system rules from clinical databases based on rough set theory. J Informat Sci 112: 67-84, 1998.
    • (1998) J Informat Sci , vol.112 , pp. 67-84
    • Tsumoto, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.