메뉴 건너뛰기




Volumn , Issue , 2009, Pages 99-107

Improving clustering stability with combinatorial MRFs

Author keywords

Clustering stability; Combinatorial MRF; Comraf

Indexed keywords

CLUSTERING METHODS; CLUSTERING QUALITY; CLUSTERING RESULTS; CLUSTERING SOLUTIONS; CLUSTERING STABILITY; CLUSTERINGS; COMBINATORIAL MRF; COMRAF; CONSENSUS CLUSTERING; DATA SETS; INPUT AND OUTPUTS; JACCARD INDEX; MARKOV RANDOM FIELDS; OPTIMIZATION PROCEDURES; PARAMETER-TUNING; SIMPLE TOPOLOGY; STABILITY PROBLEM; TEXT COLLECTION;

EID: 70350692097     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1557019.1557037     Document Type: Conference Paper
Times cited : (6)

References (22)
  • 1
    • 33646436706 scopus 로고    scopus 로고
    • L. Badea. Clustering and metaclustering with nonnegative matrix decompositions. In Proceedings of ECML-16, pages 10{22, 2005.
    • L. Badea. Clustering and metaclustering with nonnegative matrix decompositions. In Proceedings of ECML-16, pages 10{22, 2005.
  • 5
    • 70349242259 scopus 로고    scopus 로고
    • R. Bekkerman and M. Scholz. Data weaving: Scaling up the state-of-the-art in data clustering. In Proceedings of CIKM-17, pages 1083{1092, 2008.
    • R. Bekkerman and M. Scholz. Data weaving: Scaling up the state-of-the-art in data clustering. In Proceedings of CIKM-17, pages 1083{1092, 2008.
  • 6
    • 33746099301 scopus 로고    scopus 로고
    • S. Ben-David, U. von Luxburg, and D. Pál. A sober look at clustering stability. In Proceedings of COLT-19, pages 5{19, 2006.
    • S. Ben-David, U. von Luxburg, and D. Pál. A sober look at clustering stability. In Proceedings of COLT-19, pages 5{19, 2006.
  • 8
    • 0000913755 scopus 로고
    • Spatial interaction and statistical analysis of lattice systems
    • 36(2):192{236
    • J. Besag. Spatial interaction and statistical analysis of lattice systems. Journal of the Royal Statistical Society, 36(2):192{236, 1974.
    • (1974) Journal of the Royal Statistical Society
    • Besag, J.1
  • 10
    • 77952375075 scopus 로고    scopus 로고
    • I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In Proceedings of SIGKDD-9, pages 89{98, 2003.
    • I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In Proceedings of SIGKDD-9, pages 89{98, 2003.
  • 11
    • 14344258244 scopus 로고    scopus 로고
    • Solving cluster ensemble problems by bipartite graph partitioning
    • X. Z. Fern and C. Brodley. Solving cluster ensemble problems by bipartite graph partitioning. In Proceedings of ICML-21, 2004.
    • (2004) Proceedings of ICML-21
    • Fern, X.Z.1    Brodley, C.2
  • 12
    • 84980090975 scopus 로고
    • The distribution of flora in the alpine zone
    • 11:37{50
    • P. Jaccard. The distribution of flora in the alpine zone. New Phytologist, 11:37{50, 1912.
    • (1912) New Phytologist
    • Jaccard, P.1
  • 13
    • 0033444769 scopus 로고    scopus 로고
    • A generalized rand-index method for consensus clustering of separate partitions of the same data base
    • 16:63{89
    • A. Kreiger and P. Green. A generalized rand-index method for consensus clustering of separate partitions of the same data base. Journal of Classification, 16:63{89, 1999.
    • (1999) Journal of Classification
    • Kreiger, A.1    Green, P.2
  • 15
    • 2442611856 scopus 로고    scopus 로고
    • Stability-based validation of clustering solutions
    • 16(6):1299{1323
    • T. Lange, V. Roth, M. Braun, and J. Buhmann. Stability-based validation of clustering solutions. Neural Computation, 16(6):1299{1323, 2004.
    • (2004) Neural Computation
    • Lange, T.1    Roth, V.2    Braun, M.3    Buhmann, J.4
  • 16
    • 0035514007 scopus 로고    scopus 로고
    • Resampling method for unsupervised estimation of cluster validity
    • 13(11):2573{2593
    • E. Levine and E. Domany. Resampling method for unsupervised estimation of cluster validity. Neural Computation, 13(11):2573{2593, 2001.
    • (2001) Neural Computation
    • Levine, E.1    Domany, E.2
  • 17
    • 49749114840 scopus 로고    scopus 로고
    • N. Nguyen and R. Caruana. Consensus clusterings. In Proceedings of ICDM-7, pages 607{612, 2007.
    • N. Nguyen and R. Caruana. Consensus clusterings. In Proceedings of ICDM-7, pages 607{612, 2007.
  • 18
    • 49749128817 scopus 로고    scopus 로고
    • Consensus-based ensembles of soft clusterings
    • 22(7-8):780{810
    • K. Punera and J. Ghosh. Consensus-based ensembles of soft clusterings. Applied Artificial Intelligence, 22(7-8):780{810, 2008.
    • (2008) Applied Artificial Intelligence
    • Punera, K.1    Ghosh, J.2
  • 19
    • 70350661069 scopus 로고    scopus 로고
    • V. Raghavan and M. Y. L. Ip. Techniques for measuring the stability of clustering: a comparative study. In Proceedings of SIGIR-5, pages 209{237, 1982.
    • V. Raghavan and M. Y. L. Ip. Techniques for measuring the stability of clustering: a comparative study. In Proceedings of SIGIR-5, pages 209{237, 1982.
  • 20
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • 66(336):846{850
    • W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336):846{850, 1971.
    • (1971) Journal of the American Statistical Association
    • Rand, W.M.1
  • 22
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - a knowledge reuse framework for combining multiple partitions
    • 3:583{617
    • A. Strehl and J. Ghosh. Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3:583{617, 2003.
    • (2003) Journal of Machine Learning Research
    • Strehl, A.1    Ghosh, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.