메뉴 건너뛰기




Volumn 21, Issue 11, 2009, Pages 1590-1603

Nonlinear dimension reduction with kernel sliced inverse regression

Author keywords

Dimension reduction; Igenvalue decomposition; Kernel; Reproducing kernel Hilbert space; Singular value decomposition; Sliced inverse regression; Support vector machines

Indexed keywords

DIMENSION REDUCTION; IGENVALUE DECOMPOSITION; KERNEL; REPRODUCING KERNEL HILBERT SPACE; SLICED INVERSE REGRESSION;

EID: 70350673962     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2008.232     Document Type: Article
Times cited : (78)

References (31)
  • 3
    • 84945116550 scopus 로고
    • Sliced inverse regression for dimension reduction
    • (with Discussion)
    • K.C. Li, "Sliced Inverse Regression for Dimension Reduction (with Discussion)," J. Am. Statistical Assoc., vol.86, pp. 316-342, 1991.
    • (1991) J. Am. Statistical Assoc. , vol.86 , pp. 316-342
    • Li, K.C.1
  • 4
    • 0032367227 scopus 로고    scopus 로고
    • Can SIR be as popular as multiple linear regression?
    • C. Chen and K.C. Li, "Can SIR Be as Popular as Multiple Linear Regression?" Statistica Sinica, vol.8, pp. 289-316, 1998.
    • (1998) Statistica Sinica , vol.8 , pp. 289-316
    • Chen, C.1    Li, K.C.2
  • 5
    • 0000975683 scopus 로고
    • Slicing regression: A link free regression method
    • N. Duan and K.C. Li, "Slicing Regression: A Link Free Regression Method," Annals of Statistics, vol.19, pp. 505-530, 1991.
    • (1991) Annals of Statistics , vol.19 , pp. 505-530
    • Duan, N.1    Li, K.C.2
  • 6
    • 0041753016 scopus 로고
    • On almost linearity of low dimensional projection from high dimensional data
    • P. Hall and K.C. Li, "On Almost Linearity of Low Dimensional Projection from High Dimensional Data," Annals of Statistics, vol.21, pp. 867-889, 1993.
    • (1993) Annals of Statistics , vol.21 , pp. 867-889
    • Hall, P.1    Li, K.C.2
  • 7
    • 0031536236 scopus 로고    scopus 로고
    • Nonlinear confounding in high-dimensional regression
    • K.C. Li, "Nonlinear Confounding in High-Dimensional Regression," Annals of Statistics, vol.25, pp. 577-612, 1997.
    • (1997) Annals of Statistics , vol.25 , pp. 577-612
    • Li, K.C.1
  • 8
    • 53549120920 scopus 로고    scopus 로고
    • Kernel sliced inverse regression with applications on classification
    • H.M. Wu, "Kernel Sliced Inverse Regression with Applications on Classification," J. Computational and Graphical Statistics, vol.17, no.3, pp. 590-610, 2008.
    • (2008) J. Computational and Graphical Statistics , vol.17 , Issue.3 , pp. 590-610
    • Wu, H.M.1
  • 9
    • 10044235999 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • C.C. Chang and C.J. Lin, "LIBSVM: A Library for Support Vector Machines," Software, http://www.csie.ntu.edu.tw/∼cjlin/libsvm, 2001.
    • (2001) Software
    • Chang, C.C.1    Lin, C.J.2
  • 10
    • 0002432565 scopus 로고
    • Multivariate adaptative regression splines
    • J.H. Friedman, "Multivariate Adaptative Regression Splines," Annals of Statistics, vol.19, pp. 1-67, 1991.
    • (1991) Annals of Statistics , vol.19 , pp. 1-67
    • Friedman, J.H.1
  • 12
    • 0001873883 scopus 로고    scopus 로고
    • Support vector machines, reproducing kernel hillbert spaces, and randomized gacv
    • B. Scholkopf, C.J.C. Burges, and A.J. Smola, eds., The MIT Press
    • G. Wahba, "Support Vector Machines, Reproducing Kernel Hillbert Spaces, and Randomized GACV," Advances in Kernel Methods-Support Vector Learning, B. Scholkopf, C.J.C. Burges, and A.J. Smola, eds., The MIT Press, 1999.
    • (1999) Advances in Kernel Methods-Support Vector Learning
    • Wahba, G.1
  • 14
    • 0003951313 scopus 로고
    • Nonparametric function estimation, modeling and simulation
    • J.R. Thompson and R.A. Tapia, Nonparametric Function Estimation, Modeling, and Simulation. SIAM, 1990.
    • (1990) SIAM
    • Thompson, J.R.1    Tapia, R.A.2
  • 15
    • 0001493668 scopus 로고
    • Asymptotics of graphical projection pursuit
    • P. Diaconis and D. Freedman, "Asymptotics of Graphical Projection Pursuit," Annals of Statistics, vol.12, pp. 793-815, 1984.
    • (1984) Annals of Statistics , vol.12 , pp. 793-815
    • Diaconis, P.1    Freedman, D.2
  • 17
    • 33846092558 scopus 로고    scopus 로고
    • Reduced support vector machines: A statistical theory
    • Jan.
    • Y.J. Lee and S.Y. Huang, "Reduced Support Vector Machines: A Statistical Theory," IEEE Trans. Neural Networks, vol.18, no.1, pp. 1-13, Jan. 2007.
    • (2007) IEEE Trans. Neural Networks , vol.18 , Issue.1 , pp. 1-13
    • Lee, Y.J.1    Huang, S.Y.2
  • 20
    • 0003120218 scopus 로고    scopus 로고
    • Sequential minimal optimization: A fast algorithm for training support vector machines
    • B. Scholkopf, C.J.C. Burges, and A.J. Smola, eds., The MIT Press
    • J.C. Platt, "Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines," Advances in Kernel Methods -Support Vector Learning, B. Scholkopf, C.J.C. Burges, and A.J. Smola, eds., The MIT Press, 1999.
    • (1999) Advances in Kernel Methods -Support Vector Learning
    • Platt, J.C.1
  • 22
    • 70350628203 scopus 로고    scopus 로고
    • MATLAB, User's Guide. The MathWorks, Inc., 1992
    • MATLAB, User's Guide. The MathWorks, Inc., 1992.
  • 24
    • 0032337534 scopus 로고    scopus 로고
    • Determining the dimension in sliced inverse regression and related methods
    • L. Ferré, "Determining the Dimension in Sliced Inverse Regression and Related Methods," J. Am. Statistical Assoc., vol.93, pp. 132-140, 1998.
    • (1998) J. Am. Statistical Assoc. , vol.93 , pp. 132-140
    • Ferré, L.1
  • 25
    • 21344478847 scopus 로고
    • Determining the dimensionality in sliced inverse regression
    • J.R. Schott, "Determining the Dimensionality in Sliced Inverse Regression," J. Am. Statistical Assoc., vol.89, pp. 141-148, 1994.
    • (1994) J. Am. Statistical Assoc. , vol.89 , pp. 141-148
    • Schott, J.R.1
  • 26
    • 0032338774 scopus 로고    scopus 로고
    • Assessing the number of linear components in a general regression problem
    • S. Velilla, "Assessing the Number of Linear Components in a General Regression Problem," J. Am. Statistical Assoc., vol.93, pp. 1088-1098, 1998.
    • (1998) J. Am. Statistical Assoc. , vol.93 , pp. 1088-1098
    • Velilla, S.1
  • 27
    • 1142265318 scopus 로고    scopus 로고
    • Using the bootstrap to select one of a new class of dimension reduction methods
    • Z. Ye and R.E. Weiss, "Using the Bootstrap to Select One of a New Class of Dimension Reduction Methods," J. Am. Statistical Assoc., vol.98, pp. 968-979, 1998.
    • (1998) J. Am. Statistical Assoc. , vol.98 , pp. 968-979
    • Ye, Z.1    Weiss, R.E.2
  • 28
    • 70350638325 scopus 로고    scopus 로고
    • An eigenvector variability plot
    • To be published
    • I.P. Tu, H. Chen, H.P. Wu, and X. Chen, "An Eigenvector Variability Plot," to be published in Statistica Sinica, vol.19, no 4, Oct. 2009.
    • (2009) Statistica Sinica, Oct. , vol.19 , Issue.4
    • Tu, I.P.1    Chen, H.2    Wu, H.P.3    Chen, X.4
  • 29
    • 84937549955 scopus 로고
    • The scree test for the number of factors
    • R.B. Cattell, "The Scree Test for the Number of Factors," Multivariate Behavioral Research, vol.1, pp. 245-276, 1966.
    • (1966) Multivariate Behavioral Research , vol.1 , pp. 245-276
    • Cattell, R.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.