-
1
-
-
0442327335
-
Combinatorial Nullstellensatz
-
N. Alon 1999 Combinatorial Nullstellensatz Combin. Probab. Comput. 8 7 29
-
(1999)
Combin. Probab. Comput.
, vol.8
, pp. 7-29
-
-
Alon, N.1
-
3
-
-
84968508650
-
A heuristic asymptotic formula concerning the distribution of prime numbers
-
P. T. Bateman R. A. Horn 1962 A heuristic asymptotic formula concerning the distribution of prime numbers Math. Comp. 16 363 367
-
(1962)
Math. Comp.
, vol.16
, pp. 363-367
-
-
Bateman, P.T.1
Horn, R.A.2
-
6
-
-
0030554108
-
Polynomial extensions of van der Waerden's and Szemerédi's theorems
-
V. Bergelson A. Leibman 1996 Polynomial extensions of van der Waerden's and Szemerédi's theorems J. Amer. Math. Soc. 9 725 753
-
(1996)
J. Amer. Math. Soc.
, vol.9
, pp. 725-753
-
-
Bergelson, V.1
Leibman, A.2
-
9
-
-
32544446723
-
Polynomial averages converge to the product of integrals
-
N. Frantzikinakis B. Kra 2005 Polynomial averages converge to the product of integrals Israel J. Math. 148 267 276
-
(2005)
Israel J. Math.
, vol.148
, pp. 267-276
-
-
Frantzikinakis, N.1
Kra, B.2
-
10
-
-
51649169500
-
Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions
-
H. Furstenberg 1977 Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions J. Anal. Math. 31 204 256
-
(1977)
J. Anal. Math.
, vol.31
, pp. 204-256
-
-
Furstenberg, H.1
-
12
-
-
51249184670
-
An ergodic Szemerédi theorem for commuting transformations
-
1979
-
H. Furstenberg Y. Katznelson 1978 An ergodic Szemerédi theorem for commuting transformations J. Anal. Math. 34 275 291 1979
-
(1978)
J. Anal. Math.
, vol.34
, pp. 275-291
-
-
Furstenberg, H.1
Katznelson, Y.2
-
14
-
-
24444437423
-
Higher correlations of divisor sums related to primes. I. Triple correlations
-
66 pp
-
D. A. Goldston C. Y. YIldIrIm 2003 Higher correlations of divisor sums related to primes. I. Triple correlations Integers 3 A5 66 pp
-
(2003)
Integers
, vol.3
, pp. 5
-
-
Goldston, D.A.1
Yildirim, C.Y.2
-
15
-
-
0035618488
-
A new proof of Szemerédi's theorem
-
W. T. Gowers 2001 A new proof of Szemerédi's theorem Geom. Funct. Anal. 11 465 588
-
(2001)
Geom. Funct. Anal.
, vol.11
, pp. 465-588
-
-
Gowers, W.T.1
-
16
-
-
0037104086
-
On arithmetic structures in dense sets of integers
-
B. Green 2002 On arithmetic structures in dense sets of integers Duke Math. J. 114 215 238
-
(2002)
Duke Math. J.
, vol.114
, pp. 215-238
-
-
Green, B.1
-
18
-
-
43449086031
-
The primes contain arbitrarily long arithmetic progressions
-
B. Green T. Tao 2008 The primes contain arbitrarily long arithmetic progressions Ann. of Math. 167 481 547
-
(2008)
Ann. of Math.
, vol.167
, pp. 481-547
-
-
Green, B.1
Tao, T.2
-
20
-
-
33947211887
-
Progressions arithmétiques dans les nombres premiers (d'après B. Green et T. Tao)
-
229-246
-
B. Host 2006 Progressions arithmétiques dans les nombres premiers (d'après B. Green et T. Tao) Astérisque 307 viii 229-246
-
(2006)
Astérisque
, vol.307
-
-
Host, B.1
-
21
-
-
18444379725
-
Convergence of polynomial ergodic averages
-
B. Host B. Kra 2005 Convergence of polynomial ergodic averages Israel J. Math. 149 1 19
-
(2005)
Israel J. Math.
, vol.149
, pp. 1-19
-
-
Host, B.1
Kra, B.2
-
23
-
-
18444400190
-
Convergence of multiple ergodic averages along polynomials of several variables
-
A. Leibman 2005 Convergence of multiple ergodic averages along polynomials of several variables Israel J. Math. 146 303 315
-
(2005)
Israel J. Math.
, vol.146
, pp. 303-315
-
-
Leibman, A.1
-
24
-
-
84963056769
-
On sets of natural numbers whose difference set contains no squares
-
J. Pintz W. L. Steiger E. Szemerédi 1988 On sets of natural numbers whose difference set contains no squares J. London Math. Soc. 37 219 231
-
(1988)
J. London Math. Soc.
, vol.37
, pp. 219-231
-
-
Pintz, J.1
Steiger, W.L.2
Szemerédi, E.3
-
26
-
-
85009742760
-
Additive properties of dense subsets of sifted sequences
-
O. Ramaré I. Z. Ruzsa 2001 Additive properties of dense subsets of sifted sequences J. Théor. Nombres Bordeaux 13 559 581
-
(2001)
J. Théor. Nombres Bordeaux
, vol.13
, pp. 559-581
-
-
Ramaré, O.1
Ruzsa, I.Z.2
-
27
-
-
0005877097
-
An analog of Freiman's theorem in groups
-
323-326
-
I. Z. Ruzsa 1999 An analog of Freiman's theorem in groups Astérisque 258 xv 323-326
-
(1999)
Astérisque
, vol.258
-
-
Ruzsa, I.Z.1
-
28
-
-
0001333329
-
On difference sets of sequences of integers. i
-
A. Sárközy 1978 On difference sets of sequences of integers. I Acta Math. Acad. Sci. Hungar. 31 125 149
-
(1978)
Acta Math. Acad. Sci. Hungar.
, vol.31
, pp. 125-149
-
-
Sárközy, A.1
-
29
-
-
0037256206
-
A polynomial Sárközy-Furstenberg theorem with upper bounds
-
S. Slijepčević 2003 A polynomial Sárközy- Furstenberg theorem with upper bounds Acta Math. Hungar. 98 111 128
-
(2003)
Acta Math. Hungar.
, vol.98
, pp. 111-128
-
-
Slijepčević, S.1
-
30
-
-
0001549458
-
On sets of integers containing no k elements in arithmetic progression
-
E. Szemerédi 1975 On sets of integers containing no k elements in arithmetic progression Acta Arith. 27 199 245
-
(1975)
Acta Arith.
, vol.27
, pp. 199-245
-
-
Szemerédi, E.1
-
31
-
-
33847753436
-
The Gaussian primes contain arbitrarily shaped constellations
-
T. Tao 2006 The Gaussian primes contain arbitrarily shaped constellations J. Anal. Math. 99 109 176
-
(2006)
J. Anal. Math.
, vol.99
, pp. 109-176
-
-
Tao, T.1
-
32
-
-
57049189866
-
Obstructions to uniformity and arithmetic patterns in the primes
-
T. Tao 2006 Obstructions to uniformity and arithmetic patterns in the primes Pure Appl. Math. Q. 2 395 433
-
(2006)
Pure Appl. Math. Q.
, vol.2
, pp. 395-433
-
-
Tao, T.1
-
33
-
-
33750924975
-
- A quantitative ergodic theory proof of Szemerédi's theorem
-
Research Paper 99
-
- A quantitative ergodic theory proof of Szemerédi's theorem. Electron. J. Combin., 13 (2006), Research Paper 99, 49 pp.
-
Electron. J. Combin
, vol.13
, pp. 49
-
-
-
34
-
-
33746620574
-
A variant of the hypergraph removal lemma
-
T. Tao 2006 A variant of the hypergraph removal lemma J. Combin. Theory Ser. A 113 1257 1280
-
(2006)
J. Combin. Theory Ser. A
, vol.113
, pp. 1257-1280
-
-
Tao, T.1
-
35
-
-
84871127642
-
-
Unpublished notes
-
- An ergodic transference theorem. Unpublished notes. http://www.math.ucla.edu/~tao/preprints/Expository/limiting.dvi.
-
- An Ergodic Transference Theorem
-
-
-
38
-
-
84963018535
-
On certain sets of positive density
-
P. Varnavides 1959 On certain sets of positive density J. London Math. Soc. 34 358 360
-
(1959)
J. London Math. Soc.
, vol.34
, pp. 358-360
-
-
Varnavides, P.1
|