메뉴 건너뛰기




Volumn 201, Issue 2, 2008, Pages 213-305

Erratum to "The primes contain arbitrarily long polynomial progressions" (Acta Math., (2008), 201, (213-305), 10.1007/s11511-008-0032-5);The primes contain arbitrarily long polynomial progressions

Author keywords

[No Author keywords available]

Indexed keywords


EID: 57049109249     PISSN: 00015962     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11511-013-0097-7     Document Type: Erratum
Times cited : (87)

References (38)
  • 1
    • 0442327335 scopus 로고    scopus 로고
    • Combinatorial Nullstellensatz
    • N. Alon 1999 Combinatorial Nullstellensatz Combin. Probab. Comput. 8 7 29
    • (1999) Combin. Probab. Comput. , vol.8 , pp. 7-29
    • Alon, N.1
  • 3
    • 84968508650 scopus 로고
    • A heuristic asymptotic formula concerning the distribution of prime numbers
    • P. T. Bateman R. A. Horn 1962 A heuristic asymptotic formula concerning the distribution of prime numbers Math. Comp. 16 363 367
    • (1962) Math. Comp. , vol.16 , pp. 363-367
    • Bateman, P.T.1    Horn, R.A.2
  • 6
    • 0030554108 scopus 로고    scopus 로고
    • Polynomial extensions of van der Waerden's and Szemerédi's theorems
    • V. Bergelson A. Leibman 1996 Polynomial extensions of van der Waerden's and Szemerédi's theorems J. Amer. Math. Soc. 9 725 753
    • (1996) J. Amer. Math. Soc. , vol.9 , pp. 725-753
    • Bergelson, V.1    Leibman, A.2
  • 9
    • 32544446723 scopus 로고    scopus 로고
    • Polynomial averages converge to the product of integrals
    • N. Frantzikinakis B. Kra 2005 Polynomial averages converge to the product of integrals Israel J. Math. 148 267 276
    • (2005) Israel J. Math. , vol.148 , pp. 267-276
    • Frantzikinakis, N.1    Kra, B.2
  • 10
    • 51649169500 scopus 로고
    • Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions
    • H. Furstenberg 1977 Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions J. Anal. Math. 31 204 256
    • (1977) J. Anal. Math. , vol.31 , pp. 204-256
    • Furstenberg, H.1
  • 12
    • 51249184670 scopus 로고
    • An ergodic Szemerédi theorem for commuting transformations
    • 1979
    • H. Furstenberg Y. Katznelson 1978 An ergodic Szemerédi theorem for commuting transformations J. Anal. Math. 34 275 291 1979
    • (1978) J. Anal. Math. , vol.34 , pp. 275-291
    • Furstenberg, H.1    Katznelson, Y.2
  • 14
    • 24444437423 scopus 로고    scopus 로고
    • Higher correlations of divisor sums related to primes. I. Triple correlations
    • 66 pp
    • D. A. Goldston C. Y. YIldIrIm 2003 Higher correlations of divisor sums related to primes. I. Triple correlations Integers 3 A5 66 pp
    • (2003) Integers , vol.3 , pp. 5
    • Goldston, D.A.1    Yildirim, C.Y.2
  • 15
    • 0035618488 scopus 로고    scopus 로고
    • A new proof of Szemerédi's theorem
    • W. T. Gowers 2001 A new proof of Szemerédi's theorem Geom. Funct. Anal. 11 465 588
    • (2001) Geom. Funct. Anal. , vol.11 , pp. 465-588
    • Gowers, W.T.1
  • 16
    • 0037104086 scopus 로고    scopus 로고
    • On arithmetic structures in dense sets of integers
    • B. Green 2002 On arithmetic structures in dense sets of integers Duke Math. J. 114 215 238
    • (2002) Duke Math. J. , vol.114 , pp. 215-238
    • Green, B.1
  • 18
    • 43449086031 scopus 로고    scopus 로고
    • The primes contain arbitrarily long arithmetic progressions
    • B. Green T. Tao 2008 The primes contain arbitrarily long arithmetic progressions Ann. of Math. 167 481 547
    • (2008) Ann. of Math. , vol.167 , pp. 481-547
    • Green, B.1    Tao, T.2
  • 20
    • 33947211887 scopus 로고    scopus 로고
    • Progressions arithmétiques dans les nombres premiers (d'après B. Green et T. Tao)
    • 229-246
    • B. Host 2006 Progressions arithmétiques dans les nombres premiers (d'après B. Green et T. Tao) Astérisque 307 viii 229-246
    • (2006) Astérisque , vol.307
    • Host, B.1
  • 21
    • 18444379725 scopus 로고    scopus 로고
    • Convergence of polynomial ergodic averages
    • B. Host B. Kra 2005 Convergence of polynomial ergodic averages Israel J. Math. 149 1 19
    • (2005) Israel J. Math. , vol.149 , pp. 1-19
    • Host, B.1    Kra, B.2
  • 23
    • 18444400190 scopus 로고    scopus 로고
    • Convergence of multiple ergodic averages along polynomials of several variables
    • A. Leibman 2005 Convergence of multiple ergodic averages along polynomials of several variables Israel J. Math. 146 303 315
    • (2005) Israel J. Math. , vol.146 , pp. 303-315
    • Leibman, A.1
  • 24
    • 84963056769 scopus 로고
    • On sets of natural numbers whose difference set contains no squares
    • J. Pintz W. L. Steiger E. Szemerédi 1988 On sets of natural numbers whose difference set contains no squares J. London Math. Soc. 37 219 231
    • (1988) J. London Math. Soc. , vol.37 , pp. 219-231
    • Pintz, J.1    Steiger, W.L.2    Szemerédi, E.3
  • 26
    • 85009742760 scopus 로고    scopus 로고
    • Additive properties of dense subsets of sifted sequences
    • O. Ramaré I. Z. Ruzsa 2001 Additive properties of dense subsets of sifted sequences J. Théor. Nombres Bordeaux 13 559 581
    • (2001) J. Théor. Nombres Bordeaux , vol.13 , pp. 559-581
    • Ramaré, O.1    Ruzsa, I.Z.2
  • 27
    • 0005877097 scopus 로고    scopus 로고
    • An analog of Freiman's theorem in groups
    • 323-326
    • I. Z. Ruzsa 1999 An analog of Freiman's theorem in groups Astérisque 258 xv 323-326
    • (1999) Astérisque , vol.258
    • Ruzsa, I.Z.1
  • 28
    • 0001333329 scopus 로고
    • On difference sets of sequences of integers. i
    • A. Sárközy 1978 On difference sets of sequences of integers. I Acta Math. Acad. Sci. Hungar. 31 125 149
    • (1978) Acta Math. Acad. Sci. Hungar. , vol.31 , pp. 125-149
    • Sárközy, A.1
  • 29
    • 0037256206 scopus 로고    scopus 로고
    • A polynomial Sárközy-Furstenberg theorem with upper bounds
    • S. Slijepčević 2003 A polynomial Sárközy- Furstenberg theorem with upper bounds Acta Math. Hungar. 98 111 128
    • (2003) Acta Math. Hungar. , vol.98 , pp. 111-128
    • Slijepčević, S.1
  • 30
    • 0001549458 scopus 로고
    • On sets of integers containing no k elements in arithmetic progression
    • E. Szemerédi 1975 On sets of integers containing no k elements in arithmetic progression Acta Arith. 27 199 245
    • (1975) Acta Arith. , vol.27 , pp. 199-245
    • Szemerédi, E.1
  • 31
    • 33847753436 scopus 로고    scopus 로고
    • The Gaussian primes contain arbitrarily shaped constellations
    • T. Tao 2006 The Gaussian primes contain arbitrarily shaped constellations J. Anal. Math. 99 109 176
    • (2006) J. Anal. Math. , vol.99 , pp. 109-176
    • Tao, T.1
  • 32
    • 57049189866 scopus 로고    scopus 로고
    • Obstructions to uniformity and arithmetic patterns in the primes
    • T. Tao 2006 Obstructions to uniformity and arithmetic patterns in the primes Pure Appl. Math. Q. 2 395 433
    • (2006) Pure Appl. Math. Q. , vol.2 , pp. 395-433
    • Tao, T.1
  • 33
    • 33750924975 scopus 로고    scopus 로고
    • - A quantitative ergodic theory proof of Szemerédi's theorem
    • Research Paper 99
    • - A quantitative ergodic theory proof of Szemerédi's theorem. Electron. J. Combin., 13 (2006), Research Paper 99, 49 pp.
    • Electron. J. Combin , vol.13 , pp. 49
  • 34
    • 33746620574 scopus 로고    scopus 로고
    • A variant of the hypergraph removal lemma
    • T. Tao 2006 A variant of the hypergraph removal lemma J. Combin. Theory Ser. A 113 1257 1280
    • (2006) J. Combin. Theory Ser. A , vol.113 , pp. 1257-1280
    • Tao, T.1
  • 35
    • 84871127642 scopus 로고    scopus 로고
    • Unpublished notes
    • - An ergodic transference theorem. Unpublished notes. http://www.math.ucla.edu/~tao/preprints/Expository/limiting.dvi.
    • - An Ergodic Transference Theorem
  • 38
    • 84963018535 scopus 로고
    • On certain sets of positive density
    • P. Varnavides 1959 On certain sets of positive density J. London Math. Soc. 34 358 360
    • (1959) J. London Math. Soc. , vol.34 , pp. 358-360
    • Varnavides, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.