메뉴 건너뛰기




Volumn , Issue , 2009, Pages 617-625

Large-scale graph mining using backbone refinement classes

Author keywords

Experimentation; Performance; Theory

Indexed keywords

CLASS SIZE; CLASSIFICATION ACCURACY; CLOSED FRAGMENTS; CROSS VALIDATION; DATA SETS; DESCRIPTORS; EXPERIMENTATION; FEATURE ENTROPY; FEATURE SETS; GRAPH MINING; LARGE PARTS; LARGE-SCALE DATASETS; NEW APPROACHES; PERFORMANCE; RUNNING TIME; SEARCH SPACES; STATISTICAL CONSTRAINTS; SUBGRAPHS; THEORY; TRAINING SETS; TREE MINING; UPPER BOUND;

EID: 70350627641     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1557019.1557089     Document Type: Conference Paper
Times cited : (13)

References (14)
  • 3
    • 33746256602 scopus 로고    scopus 로고
    • Lazy Structure-Activity Relationships (lazar) for the Prediction of Rodent Carcinogenicity and Salmonella Mutagenicity
    • C. Helma. Lazy Structure-Activity Relationships (lazar) for the Prediction of Rodent Carcinogenicity and Salmonella Mutagenicity. Molecular Diversity, pages 147-158, 2006.
    • (2006) Molecular Diversity , pp. 147-158
    • Helma, C.1
  • 8
    • 12244294066 scopus 로고    scopus 로고
    • S. Nijssen and J. N. Kok. A Quickstart in Frequent Structure Mining can make a Difference. In KDD '04: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 647-652, New York, NY, USA, 2004. ACM.
    • S. Nijssen and J. N. Kok. A Quickstart in Frequent Structure Mining can make a Difference. In KDD '04: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 647-652, New York, NY, USA, 2004. ACM.
  • 11
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80-83, 1945.
    • (1945) Biometrics Bulletin , vol.1 , Issue.6 , pp. 80-83
    • Wilcoxon, F.1
  • 12
    • 33646435063 scopus 로고    scopus 로고
    • A Quantitative Comparison of the Subgraph Miners MoFa, gSpan, FFSM, and Gaston
    • M. Wörlein, T. Meinl, I. Fischer, and M. Philippsen. A Quantitative Comparison of the Subgraph Miners MoFa, gSpan, FFSM, and Gaston. In Proceedings of PKDD, pages 392-403, 2005.
    • (2005) Proceedings of PKDD , pp. 392-403
    • Wörlein, M.1    Meinl, T.2    Fischer, I.3    Philippsen, M.4
  • 13
    • 78149333073 scopus 로고    scopus 로고
    • X. Yan and J. Han. gSpan: Graph-Based Substructure Pattern Mining. In ICDM '02: Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM'02), page 721, Washington, DC, USA, 2002. IEEE Computer Society.
    • X. Yan and J. Han. gSpan: Graph-Based Substructure Pattern Mining. In ICDM '02: Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM'02), page 721, Washington, DC, USA, 2002. IEEE Computer Society.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.