메뉴 건너뛰기




Volumn 5768 LNCS, Issue PART 1, 2009, Pages 181-190

Synchrony state generation in artificial neural networks with stochastic synapses

Author keywords

Neural network; Neuronal states; Stochastic synapses; Temporal synchronization

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BIOLOGICAL NEURAL SYSTEMS; CROSS-CORRELATION COEFFICIENT; GAUSSIAN NOISE; HEBBIAN; LEARNING RULES; NEURAL PROCESS; NEURONAL STATES; PARAMETER VALUES; STOCHASTIC SYNAPSES; SYNAPTIC PARAMETERS; TEMPORAL SYNCHRONIZATION;

EID: 70350609860     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-04274-4_19     Document Type: Conference Paper
Times cited : (8)

References (31)
  • 1
    • 0033661204 scopus 로고    scopus 로고
    • Synchrony generation in recurrent networks with frequency-dependent synapses
    • Tsodyks, M., Uziel, A., Markram, H.: Synchrony generation in recurrent networks with frequency-dependent synapses. J. Neurosci. 20, 50 (2000)
    • (2000) J. Neurosci , vol.20 , pp. 50
    • Tsodyks, M.1    Uziel, A.2    Markram, H.3
  • 3
    • 0029258143 scopus 로고
    • Synchrony in excitatory neural networks
    • Hansel, D., Mato, G., Meunier, C.: Synchrony in excitatory neural networks. Neural Comput. 7(2), 307-337 (1995)
    • (1995) Neural Comput , vol.7 , Issue.2 , pp. 307-337
    • Hansel, D.1    Mato, G.2    Meunier, C.3
  • 4
    • 32544447988 scopus 로고    scopus 로고
    • Network Oscillations: Emerging Computational Principles
    • Sejnowski, T.J., Paulsen, O.: Network Oscillations: Emerging Computational Principles. J. Neurosci. 26(6), 1673-1676 (2006)
    • (2006) J. Neurosci , vol.26 , Issue.6 , pp. 1673-1676
    • Sejnowski, T.J.1    Paulsen, O.2
  • 5
    • 0142141489 scopus 로고    scopus 로고
    • Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity
    • Fellous, J.M., Rudolph, A.M., Destexhe, B.A., Sejnowski, T.J.: Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience 122, 811-829 (2003)
    • (2003) Neuroscience , vol.122 , pp. 811-829
    • Fellous, J.M.1    Rudolph, A.M.2    Destexhe, B.A.3    Sejnowski, T.J.4
  • 6
    • 37649027556 scopus 로고    scopus 로고
    • Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model
    • Lindner, B., Schimansky-Geier, L., Longtin, A.: Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(3 pt. 1), 031916 (2002)
    • (2002) Phys. Rev. E Stat. Nonlin. Soft Matter Phys , vol.66 , Issue.3 PART. 1 , pp. 031916
    • Lindner, B.1    Schimansky-Geier, L.2    Longtin, A.3
  • 8
    • 85084774861 scopus 로고    scopus 로고
    • Self-Organizing Neural Integrator Predicts Interval Times through Climbing Activity
    • Durstewitz, D.: Self-Organizing Neural Integrator Predicts Interval Times through Climbing Activity. J. Neurosci. 4(12) (2003)
    • (2003) J. Neurosci , vol.4 , Issue.12
    • Durstewitz, D.1
  • 9
    • 0032830151 scopus 로고    scopus 로고
    • Neuronal synchrony: A versatile code for the definition of relations
    • Singer, W.: Neuronal synchrony: a versatile code for the definition of relations. Neuron 24, 49-65 (1999)
    • (1999) Neuron , vol.24 , pp. 49-65
    • Singer, W.1
  • 10
    • 0032867376 scopus 로고    scopus 로고
    • The temporal correlation hypothesis of visual feature integration: Still alive and well
    • Gray, C.M.: The temporal correlation hypothesis of visual feature integration: Still alive and well. Neuron 24(1), 31-47 (1999)
    • (1999) Neuron , vol.24 , Issue.1 , pp. 31-47
    • Gray, C.M.1
  • 11
    • 0035432365 scopus 로고    scopus 로고
    • Correlated neuronal activity and the flow of neural information
    • Salinas, E., Sejnowski, T.J.: Correlated neuronal activity and the flow of neural information. Nature Reviews Neuroscience 2, 539-550 (2001)
    • (2001) Nature Reviews Neuroscience , vol.2 , pp. 539-550
    • Salinas, E.1    Sejnowski, T.J.2
  • 13
    • 0028969330 scopus 로고
    • Visual feature integration and the temporal correlation hypothesis
    • Singer, W., Gray, C.M.: Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555-586 (1995)
    • (1995) Annu. Rev. Neurosci , vol.18 , pp. 555-586
    • Singer, W.1    Gray, C.M.2
  • 15
    • 0033208597 scopus 로고    scopus 로고
    • Synchrony and desynchrony in integrate-and-fire oscillators
    • Campbell, S.R., Wang, D.L., Jayaprakash, C.: Synchrony and desynchrony in integrate-and-fire oscillators. Neural Computation 11(7), 1595-1619 (1999)
    • (1999) Neural Computation , vol.11 , Issue.7 , pp. 1595-1619
    • Campbell, S.R.1    Wang, D.L.2    Jayaprakash, C.3
  • 16
    • 0035319166 scopus 로고    scopus 로고
    • On synchrony of weakly coupled neurons at low firing rate
    • Neltner, L., Hansel, D.: On synchrony of weakly coupled neurons at low firing rate. Neural Comput. 13(4), 765-774 (2001)
    • (2001) Neural Comput , vol.13 , Issue.4 , pp. 765-774
    • Neltner, L.1    Hansel, D.2
  • 17
    • 0033630629 scopus 로고    scopus 로고
    • Dynamics of strongly coupled spiking neurons
    • Bressloff, P.C., Coombes, P.S.: Dynamics of strongly coupled spiking neurons. Neural Comput. 12(1), 91-129 (2000)
    • (2000) Neural Comput , vol.12 , Issue.1 , pp. 91-129
    • Bressloff, P.C.1    Coombes, P.S.2
  • 18
    • 0035345072 scopus 로고    scopus 로고
    • Patterns of synchrony in neural networks with spike adaptation
    • Vreeswijk, C.V., Hansel, D.: Patterns of synchrony in neural networks with spike adaptation. Neural Comput. 13(5), 959-992 (2001)
    • (2001) Neural Comput , vol.13 , Issue.5 , pp. 959-992
    • Vreeswijk, C.V.1    Hansel, D.2
  • 19
    • 17044398518 scopus 로고    scopus 로고
    • Rate and synchrony in feedforward networks of coincidence detectors: Analytical solution
    • Mikula, S., Niebur, E.: Rate and synchrony in feedforward networks of coincidence detectors: Analytical solution. Neural Comput. 17(4), 881-902 (2005)
    • (2005) Neural Comput , vol.17 , Issue.4 , pp. 881-902
    • Mikula, S.1    Niebur, E.2
  • 20
    • 48449104886 scopus 로고    scopus 로고
    • Synchrony and Asynchrony in a Fully Stochastic Neural Network
    • DeVille, R.E.L., Peskin, C.S.: Synchrony and Asynchrony in a Fully Stochastic Neural Network. Bulletin of Mathematical Biology 70(6), 1608-1633 (2008)
    • (2008) Bulletin of Mathematical Biology , vol.70 , Issue.6 , pp. 1608-1633
    • DeVille, R.E.L.1    Peskin, C.S.2
  • 21
    • 33645789850 scopus 로고    scopus 로고
    • The Emergence of Up and Down States in Cortical Networks
    • Holcman, D., Tsodyks, M.: The Emergence of Up and Down States in Cortical Networks. Science 2(3), 174-181 (2006)
    • (2006) Science , vol.2 , Issue.3 , pp. 174-181
    • Holcman, D.1    Tsodyks, M.2
  • 22
    • 0033561842 scopus 로고    scopus 로고
    • Dynamic stochastic synapses as computational units
    • Maass, W., Zador, A.M.: Dynamic stochastic synapses as computational units. Neural Computation 11, 903-917 (1999)
    • (1999) Neural Computation , vol.11 , pp. 903-917
    • Maass, W.1    Zador, A.M.2
  • 24
    • 0012468888 scopus 로고    scopus 로고
    • Efficient temporal processing with biologically realistic dynamic synapses
    • Natschlager, T., Maass, W., Zador, A.: Efficient temporal processing with biologically realistic dynamic synapses. Computation in neural system 12, 75-78 (2001)
    • (2001) Computation in neural system , vol.12 , pp. 75-78
    • Natschlager, T.1    Maass, W.2    Zador, A.3
  • 25
    • 16444383906 scopus 로고    scopus 로고
    • Why are probabilistic laws governing quantum mechanics and neurobiology?
    • Kroger, H.: Why are probabilistic laws governing quantum mechanics and neurobiology? Solitons and Fractals 25, 815 (2005)
    • (2005) Solitons and Fractals , vol.25 , pp. 815
    • Kroger, H.1
  • 26
    • 0034858214 scopus 로고    scopus 로고
    • A new dynamic synapse neural network for speech recognition
    • Namarvar, H.H., Liaw, J.S., Berger, T.W.: A new dynamic synapse neural network for speech recognition. IEEE Trans., 2985-2990 (2001)
    • (2001) IEEE Trans , pp. 2985-2990
    • Namarvar, H.H.1    Liaw, J.S.2    Berger, T.W.3
  • 27
    • 0030499498 scopus 로고    scopus 로고
    • Dynamic synapse: A new concept of neural representation and computation
    • Liaw, J.S., Berger, T.W.: Dynamic synapse: A new concept of neural representation and computation. Hippocampus 6, 591-600 (1996)
    • (1996) Hippocampus , vol.6 , pp. 591-600
    • Liaw, J.S.1    Berger, T.W.2
  • 28
    • 35848933234 scopus 로고    scopus 로고
    • Consciousness & the small network argument
    • Brain and Consciousness
    • Herzog, M.H., Esfeld, M., Gerstner, W.: Consciousness & the small network argument. Neural Networks 20(9), 1054 (2007); Brain and Consciousness
    • (2007) Neural Networks , vol.20 , Issue.9 , pp. 1054
    • Herzog, M.H.1    Esfeld, M.2    Gerstner, W.3
  • 29
    • 70350611372 scopus 로고    scopus 로고
    • Synchrony-asynchrony transitions in neuronal networks
    • Dodla, R., Wilson, C.: Synchrony-asynchrony transitions in neuronal networks. BMC Neuroscience 9(suppl. 1), 9 (2008)
    • (2008) BMC Neuroscience , vol.9 , Issue.SUPPL. 1 , pp. 9
    • Dodla, R.1    Wilson, C.2
  • 31
    • 0030684474 scopus 로고    scopus 로고
    • Computing with dynamic synapses: A case study of speech recognition
    • Liaw, J.S., Berger, T.W.: Computing with dynamic synapses: A case study of speech recognition. In: Proc. IEEE Int. Conf. Neural Networks, pp. 352-355 (1997)
    • (1997) Proc. IEEE Int. Conf. Neural Networks , pp. 352-355
    • Liaw, J.S.1    Berger, T.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.