-
1
-
-
33646893481
-
The application of He's homotopy perturbation method to nonlinear equations arising in heat transfer
-
Ganji D D The application of He's homotopy perturbation method to nonlinear equations arising in heat transfer Phys. Lett. A 355 337-41
-
Phys. Lett.
, vol.355
, pp. 337-341
-
-
Ganji, D.D.1
-
3
-
-
0006990947
-
Variational iteration method for delay differential equations
-
He J H 1997 Variational iteration method for delay differential equations Commun. Nonlinear Sci. Numer. Simulat. 2 235-6
-
(1997)
Commun. Nonlinear Sci. Numer. Simulat.
, vol.2
, Issue.4
, pp. 235-236
-
-
He, J.H.1
-
4
-
-
0032308350
-
Approximate solution of nonlinear differential equations with convolution product non-linearities
-
He J H 1998 Approximate solution of nonlinear differential equations with convolution product non-linearities Comput. Methods. Appl. Mech. Eng. 167 69-73
-
(1998)
Comput. Methods. Appl. Mech. Eng.
, vol.167
, Issue.1-2
, pp. 69-73
-
-
He, J.H.1
-
5
-
-
0032307661
-
Approximate analytical solution for seepage flow with fractional derivatives in porous media
-
He J H 1998 Approximate analytical solution for seepage flow with fractional derivatives in porous media Comput. Methods Appl. Mech. Eng. 167 57-68
-
(1998)
Comput. Methods Appl. Mech. Eng.
, vol.167
, Issue.1-2
, pp. 57-68
-
-
He, J.H.1
-
6
-
-
0000092673
-
Variational iteration method a kind of non-linear analytical technique: Some examples
-
He J H 1999 Variational iteration method a kind of non-linear analytical technique: some examples Int. J. Nonlinear Mech. 34 699-708
-
(1999)
Int. J. Nonlinear Mech.
, vol.34
, Issue.4
, pp. 699-708
-
-
He, J.H.1
-
7
-
-
0040184009
-
Variational iteration method for autonomous ordinary differential systems
-
He J H 2000 Variational iteration method for autonomous ordinary differential systems Appl. Math. Comput. 114 115-23
-
(2000)
Appl. Math. Comput.
, vol.114
, Issue.2-3
, pp. 115-123
-
-
He, J.H.1
-
8
-
-
10244263652
-
An iteration formulation for normalized diode characteristics
-
He J H, Wan Y Q and Guo Q 2004 An iteration formulation for normalized diode characteristics Int. J. Circuit Theory Appl. 32 629-32
-
(2004)
Int. J. Circuit Theory Appl.
, vol.32
, Issue.6
, pp. 629-632
-
-
He, J.H.1
Wan, Y.Q.2
Guo, Q.3
-
10
-
-
24944474278
-
Application of He's variational iteration method to Helmholtz equation
-
Momani S and Abuasad S 2006 Application of He's variational iteration method to Helmholtz equation Chaos Solitons Fractals 27 1119-23
-
(2006)
Chaos Solitons Fractals
, vol.27
, Issue.5
, pp. 1119-1123
-
-
Momani, S.1
Abuasad, S.2
-
11
-
-
19144365030
-
Variational iteration method for solving Burger's and coupled Burger's equations
-
Abdou M A and Soliman A A 2005 Variational iteration method for solving Burger's and coupled Burger's equations J. Comput. Appl. Math. 181 245-51
-
(2005)
J. Comput. Appl. Math.
, vol.181
, Issue.2
, pp. 245-251
-
-
Abdou, M.A.1
Soliman, A.A.2
-
13
-
-
33646878106
-
Analytical approach to linear fractional partial differential equations arising in fluid mechanics
-
Momani S and Odibat Z Analytical approach to linear fractional partial differential equations arising in fluid mechanics Phys. Lett. A 355 271-9
-
Phys. Lett.
, vol.355
, pp. 271-279
-
-
Momani, S.1
Odibat, Z.2
-
14
-
-
84945559380
-
Numerical comparison of methods for solving linear differential equations of fractional order
-
Momani S and Odibat Z Numerical comparison of methods for solving linear differential equations of fractional order Chaos Solitons Fractals at press
-
Chaos Solitons Fractals
-
-
Momani, S.1
Odibat, Z.2
-
15
-
-
30344464250
-
Application of variational iteration method to nonlinear differential equations of fractional order
-
Odibat Z and Momani S 2006 Application of variational iteration method to nonlinear differential equations of fractional order Int. J. Nonlinear Sci. Numer. Simul. 7 27-34
-
(2006)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.7
, pp. 27-34
-
-
Odibat, Z.1
Momani, S.2
-
16
-
-
85126441511
-
Variational iteration method for one dimensional nonlinear thermoelasticity
-
Sweilam N H and Khader M M Variational iteration method for one dimensional nonlinear thermoelasticity Chaos Solitons Fractals at press
-
Chaos Solitons Fractals
-
-
Sweilam, N.H.1
Khader, M.M.2
-
17
-
-
27144467065
-
New applications of variational iteration method
-
Abdou M A and Soliman A A 2005 New applications of variational iteration method Physica D 211 1-8
-
(2005)
Physica
, vol.211
, Issue.1-2
, pp. 1-8
-
-
Abdou, M.A.1
Soliman, A.A.2
-
18
-
-
24944574717
-
The solution of a nonclassic problem for one-dimensional hyperbolic equation using the decomposition procedure
-
Dehghan M 2004 The solution of a nonclassic problem for one-dimensional hyperbolic equation using the decomposition procedure Int. J. Comput. Math. 81 979-89
-
(2004)
Int. J. Comput. Math.
, vol.81
, Issue.8
, pp. 979-989
-
-
Dehghan, M.1
-
20
-
-
30344475545
-
Construction of solitary solution and compacton-like solution by variational iteration method
-
He J H and Wu X H 2006 Construction of solitary solution and compacton-like solution by variational iteration method Chaos Solitons Fractals 29 108-13
-
(2006)
Chaos Solitons Fractals
, vol.29
, Issue.1
, pp. 108-113
-
-
He, J.H.1
Wu, X.H.2
-
21
-
-
2442500782
-
Fractional Brownian motions via random walk in the complex plane and via fractional derivative, comparison and further results on their Fokker-Planck equations
-
Jumarie G 2004 Fractional Brownian motions via random walk in the complex plane and via fractional derivative, comparison and further results on their Fokker-Planck equations Chaos Solitons Fractals 22 907-25
-
(2004)
Chaos Solitons Fractals
, vol.22
, Issue.4
, pp. 907-925
-
-
Jumarie, G.1
-
22
-
-
0142197373
-
Self-similar characteristics of neural networks based on Fokker-Planck equation
-
Kamitani Y and Matsuba I 2004 Self-similar characteristics of neural networks based on Fokker-Planck equation Chaos Solitons Fractals 20 329-35
-
(2004)
Chaos Solitons Fractals
, vol.20
, Issue.2
, pp. 329-335
-
-
Kamitani, Y.1
Matsuba, I.2
-
23
-
-
0242365780
-
Stretched Gaussian asymptotic behavior for fractional Fokker-Planck equation on fractal structure in external force fields
-
Xu Y, Ren F Y, Liang J R and Qiu W Y 2004 Stretched Gaussian asymptotic behavior for fractional Fokker-Planck equation on fractal structure in external force fields Chaos Solitons Fractals 20 581-6
-
(2004)
Chaos Solitons Fractals
, vol.20
, Issue.3
, pp. 581-586
-
-
Xu, Y.1
Ren, F.Y.2
Liang, J.R.3
Qiu, W.Y.4
-
24
-
-
27644550035
-
Expectation-based intelligent control
-
Zak M 2006 Expectation-based intelligent control Chaos Solitons Fractals 28 616-26
-
(2006)
Chaos Solitons Fractals
, vol.28
, Issue.3
, pp. 616-626
-
-
Zak, M.1
-
26
-
-
0242522252
-
Stochastic feedback, nonlinear families of Markov processes, and nonlinear Fokker-Planck equations
-
Frank T D 2004 Stochastic feedback, nonlinear families of Markov processes, and nonlinear Fokker-Planck equations Physica A 331 391-408
-
(2004)
Physica
, vol.331
, Issue.3-4
, pp. 391-408
-
-
Frank, T.D.1
-
27
-
-
0035453010
-
Numerical solution of an ionic Fokker-Planck equation with electronic temperature
-
Buet C, Dellacherie S and Sentis R 2001 Numerical solution of an ionic Fokker-Planck equation with electronic temperature SIAM J. Numer. Anal. 39 1219-53
-
(2001)
SIAM J. Numer. Anal.
, vol.39
, Issue.4
, pp. 1219-1253
-
-
Buet, C.1
Dellacherie, S.2
Sentis, R.3
-
28
-
-
84985337577
-
Numerical solution of the Fokker-Planck equation using moving finite elements
-
Harrison G 1988 Numerical solution of the Fokker-Planck equation using moving finite elements Numer. Methods Partial Differ. Eqns 4 219-32
-
(1988)
Numer. Methods Partial Differ. Eqns
, vol.4
, Issue.3
, pp. 219-232
-
-
Harrison, G.1
-
29
-
-
24444453563
-
Numerical solution of the Fokker-Planck equation. II. Multidimensional case
-
Palleschi V and de Rosa M 1992 Numerical solution of the Fokker-Planck equation. II. Multidimensional case Phys. Lett. A 163 381-91
-
(1992)
Phys. Lett.
, vol.163
, Issue.5-6
, pp. 381-391
-
-
Palleschi, V.1
De Rosa, M.2
-
30
-
-
0007189653
-
Numerical solution of the Fokker-Planck equation: A fast and accurate algorithm
-
Palleschi V, Sarri F, Marcozzi G and Torquati M R 1990 Numerical solution of the Fokker-Planck equation: a fast and accurate algorithm Phys. Lett. A 146 378-86
-
(1990)
Phys. Lett.
, vol.146
, Issue.7-8
, pp. 378-386
-
-
Palleschi, V.1
Sarri, F.2
Marcozzi, G.3
Torquati, M.R.4
-
31
-
-
38249012447
-
Numerical solution of simple Fokker-Planck equation
-
Vanaja V 1992 Numerical solution of simple Fokker-Planck equation Appl. Numer. Math. 9 533-40
-
(1992)
Appl. Numer. Math.
, vol.9
, Issue.6
, pp. 533-540
-
-
Vanaja, V.1
-
32
-
-
33645074308
-
Numerical solution of two-dimensional Fokker-Planck equations
-
Zorzano M P, Mais H and Vazquez L 1999 Numerical solution of two-dimensional Fokker-Planck equations Appl. Math. Comput. 98 109-17
-
(1999)
Appl. Math. Comput.
, vol.98
, Issue.2-3
, pp. 109-117
-
-
Zorzano, M.P.1
Mais, H.2
Vazquez, L.3
-
34
-
-
32644435892
-
Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices
-
Dehghan M 2006 Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices Math. Comput. Simul. 71 16-30
-
(2006)
Math. Comput. Simul.
, vol.71
, Issue.1
, pp. 16-30
-
-
Dehghan, M.1
|