-
1
-
-
85054435084
-
Neural Network Ensembles, Cross Validation, and Active Learning
-
G. Tesauro, D. Touretzky, and T. Leen, eds., MIT Press
-
A. Krogh and J. Vedelsby, "Neural Network Ensembles, Cross Validation, and Active Learning," Advances in Neural Information Processing Systems, G. Tesauro, D. Touretzky, and T. Leen, eds., vol.7, MIT Press, pp. 231-238, 1995, citeseer.nj.nec.com/ krogh95neural.html.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
2
-
-
80053403826
-
Ensemble Methods in Machine Learning
-
T.G. Dietterich, "Ensemble Methods in Machine Learning," Lecture Notes in Computer Science 1857, pp. 1-15, 2000, citeseer.nj. nec.com/dietterich00ensemble.html.
-
(2000)
Lecture Notes in Computer Science
, vol.1857
, pp. 1-15
-
-
Dietterich, T.G.1
-
3
-
-
0032645080
-
An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
-
E. Bauer and R. Kohavi, "An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants," Machine Learning, vol.36, no.1-2, pp. 105-139, 1999, citeseer. ist.psu. edu/bauer99empirical.html.
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
4
-
-
0000551189
-
Popular ensemble methods: An empirical study
-
D. Opitz and R. Maclin, "Popular Ensemble Methods: An Empirical Study," J. Artificial Intelligence Research, vol.11, pp. 169-198, 1999, citeseer.ist.psu.edu/opitz99popular.html.
-
(1999)
J. Artificial Intelligence Research
, vol.11
, pp. 169-198
-
-
Opitz, D.1
MacLin, R.2
-
5
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
T.G. Dietterich, "An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization," Machine Learning, vol.40, no.2, pp. 139-157, 2000.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
6
-
-
0030211964
-
Bagging predictors
-
L. Breiman, "Bagging Predictors," Machine Learning, vol.24, no.2, pp. 123-140, 1996, citeseer.nj.nec.com/breiman96bagging.html.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
8
-
-
0346786584
-
Arcing classifiers
-
L. Breiman, "Arcing Classifiers," Annals of Statistics, vol.26, pp. 801-849, 1998. (Pubitemid 128450035)
-
(1998)
Annals of Statistics
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
9
-
-
0026692226
-
Stacked generalization
-
D.H. Wolpert, "Stacked Generalization," Neural Networks, vol.5, pp. 241-259, 1992, citeseer.nj.nec.com/wolpert92stacked.html.
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.H.1
-
10
-
-
0035478854
-
Random forests
-
L. Breiman, "Random Forests," Machine Learning, vol.45, no.1, pp. 5-32, 2001, citeseer.nj.nec.com/breiman01random.html.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
12
-
-
17444382204
-
Discussion of additive logistic regression: A statistical view of boosting
-
G. Ridgeway, "Discussion of Additive Logistic Regression: A Statistical View of Boosting," Annals of Statistics, vol.28, pp. 393-400, 2000.
-
(2000)
Annals of Statistics
, vol.28
, pp. 393-400
-
-
Ridgeway, G.1
-
13
-
-
0004990788
-
Mathematical programming for data mining: Formulations and challenges
-
P.S. Bradley, U.M. Fayyad, and O.L. Mangasarian, "Mathematical Programming for Data Mining: Formulations and Challenges," INFORMS J. Computing, vol.11, no.3, pp. 217-238, 1999, citeseer.nj. nec.com/ bradley98mathematical.html.
-
(1999)
INFORMS J. Computing
, vol.11
, Issue.3
, pp. 217-238
-
-
Bradley, P.S.1
Fayyad, U.M.2
Mangasarian, O.L.3
-
16
-
-
84983110889
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Y. Freund and R.E. Schapire, "A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting," Proc. European Conf. Computational Learning Theory, pp. 23-37, 1995, citeseer.nj.nec.com/article/ freund95decisiontheoretic.html.
-
(1995)
Proc. European Conf. Computational Learning Theory
, pp. 23-37
-
-
Freund, Y.1
Schapire, R.E.2
|