메뉴 건너뛰기




Volumn 20, Issue 5, 2008, Pages 577-588

Bagging with adaptive costs

Author keywords

Data mining; Ensemble methods

Indexed keywords

BASE CLASSIFIERS; BASE LEARNERS; BASIC STRUCTURE; COMPUTATIONAL EXPERIMENT; ENSEMBLE LEARNING; ENSEMBLE METHODS; MISCLASSIFICATION COSTS; NOISY POINT;

EID: 70350319675     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2007.190724     Document Type: Article
Times cited : (13)

References (18)
  • 1
    • 85054435084 scopus 로고
    • Neural Network Ensembles, Cross Validation, and Active Learning
    • G. Tesauro, D. Touretzky, and T. Leen, eds., MIT Press
    • A. Krogh and J. Vedelsby, "Neural Network Ensembles, Cross Validation, and Active Learning," Advances in Neural Information Processing Systems, G. Tesauro, D. Touretzky, and T. Leen, eds., vol.7, MIT Press, pp. 231-238, 1995, citeseer.nj.nec.com/ krogh95neural.html.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 2
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble Methods in Machine Learning
    • T.G. Dietterich, "Ensemble Methods in Machine Learning," Lecture Notes in Computer Science 1857, pp. 1-15, 2000, citeseer.nj. nec.com/dietterich00ensemble.html.
    • (2000) Lecture Notes in Computer Science , vol.1857 , pp. 1-15
    • Dietterich, T.G.1
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
    • E. Bauer and R. Kohavi, "An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants," Machine Learning, vol.36, no.1-2, pp. 105-139, 1999, citeseer. ist.psu. edu/bauer99empirical.html.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 4
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • D. Opitz and R. Maclin, "Popular Ensemble Methods: An Empirical Study," J. Artificial Intelligence Research, vol.11, pp. 169-198, 1999, citeseer.ist.psu.edu/opitz99popular.html.
    • (1999) J. Artificial Intelligence Research , vol.11 , pp. 169-198
    • Opitz, D.1    MacLin, R.2
  • 5
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T.G. Dietterich, "An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization," Machine Learning, vol.40, no.2, pp. 139-157, 2000.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging Predictors," Machine Learning, vol.24, no.2, pp. 123-140, 1996, citeseer.nj.nec.com/breiman96bagging.html.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 7
  • 8
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • L. Breiman, "Arcing Classifiers," Annals of Statistics, vol.26, pp. 801-849, 1998. (Pubitemid 128450035)
    • (1998) Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 9
    • 0026692226 scopus 로고
    • Stacked generalization
    • D.H. Wolpert, "Stacked Generalization," Neural Networks, vol.5, pp. 241-259, 1992, citeseer.nj.nec.com/wolpert92stacked.html.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 10
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random Forests," Machine Learning, vol.45, no.1, pp. 5-32, 2001, citeseer.nj.nec.com/breiman01random.html.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 12
    • 17444382204 scopus 로고    scopus 로고
    • Discussion of additive logistic regression: A statistical view of boosting
    • G. Ridgeway, "Discussion of Additive Logistic Regression: A Statistical View of Boosting," Annals of Statistics, vol.28, pp. 393-400, 2000.
    • (2000) Annals of Statistics , vol.28 , pp. 393-400
    • Ridgeway, G.1
  • 13
    • 0004990788 scopus 로고    scopus 로고
    • Mathematical programming for data mining: Formulations and challenges
    • P.S. Bradley, U.M. Fayyad, and O.L. Mangasarian, "Mathematical Programming for Data Mining: Formulations and Challenges," INFORMS J. Computing, vol.11, no.3, pp. 217-238, 1999, citeseer.nj. nec.com/ bradley98mathematical.html.
    • (1999) INFORMS J. Computing , vol.11 , Issue.3 , pp. 217-238
    • Bradley, P.S.1    Fayyad, U.M.2    Mangasarian, O.L.3
  • 16
    • 84983110889 scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R.E. Schapire, "A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting," Proc. European Conf. Computational Learning Theory, pp. 23-37, 1995, citeseer.nj.nec.com/article/ freund95decisiontheoretic.html.
    • (1995) Proc. European Conf. Computational Learning Theory , pp. 23-37
    • Freund, Y.1    Schapire, R.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.