메뉴 건너뛰기




Volumn 3, Issue 4, 2009, Pages 303-325

Application of particle swarm optimization and proximal support vector machines for fault detection

Author keywords

Computational intelligence; Feature selection; Machine learning; Machinery condition monitoring; Support vector machine; Swarm intelligence

Indexed keywords

COMPUTATIONAL INTELLIGENCE; FEATURE SELECTION; MACHINE LEARNING; MACHINERY CONDITION MONITORING; SWARM INTELLIGENCE;

EID: 70350255984     PISSN: 19353812     EISSN: 19353820     Source Type: Journal    
DOI: 10.1007/s11721-009-0028-6     Document Type: Article
Times cited : (30)

References (37)
  • 1
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm-explosion, stability, and convergence in a multidimensional complex space
    • Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6, 58-73.
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 2
    • 0033666935 scopus 로고    scopus 로고
    • Comparing inertia weights and constriction factors in particle swarm optimization
    • In New York: IEEE Press. New York: IEEE Press
    • Eberhart, R., & Shi, Y. (2000). Comparing inertia weights and constriction factors in particle swarm optimization. In Proceedings of the 2000 IEEE congress on evolutionary computation (pp. 84-88). New York: IEEE Press.
    • (2000) Proceedings of the 2000 IEEE Congress on Evolutionary Computation , pp. 84-88
    • Eberhart, R.1    Shi, Y.2
  • 6
    • 21244486307 scopus 로고    scopus 로고
    • Multicategory proximal support vector machine classifiers
    • Fung, G., & Mangasarian, O. L. (2005). Multicategory proximal support vector machine classifiers. Machine Learning, 59, 77-97.
    • (2005) Machine Learning , vol.59 , pp. 77-97
    • Fung, G.1    Mangasarian, O.L.2
  • 7
    • 0345978376 scopus 로고    scopus 로고
    • Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms
    • Jack, L. B., & Nandi, A. K. (2002). Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms. Mechanical Systems and Signal Processing, 16, 373-390.
    • (2002) Mechanical Systems and Signal Processing , vol.16 , pp. 373-390
    • Jack, L.B.1    Nandi, A.K.2
  • 8
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • In B. Scholkopf, C.J. Burges, A. Simola (Eds.) Cambridge: MIT Press
    • Joachims, T. (1999). Making large-scale SVM learning practical. In B. Scholkopf, C.J. Burges, A. Simola (Eds.) Advances in kernel methods - support vector learning (pp. 169-184). Cambridge: MIT Press.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 10
    • 84899047533 scopus 로고    scopus 로고
    • Small worlds and mega-minds: Effects of neighborhood topology on particle swam performance
    • In New York: IEEE Press
    • Kennedy, J. (1999). Small worlds and mega-minds: Effects of neighborhood topology on particle swam performance. In Proceedings of the 1999 IEEE congress on evolutionary computation (pp. 1931-1938). New York: IEEE Press.
    • (1999) Proceedings of the 1999 IEEE Congress on Evolutionary Computation , pp. 1931-1938
    • Kennedy, J.1
  • 22
    • 45449118697 scopus 로고    scopus 로고
    • Particle swarm optimization - An overview
    • Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization - An overview. Swarm Intelligence, 1, 33-57.
    • (2007) Swarm Intelligence , vol.1 , pp. 33-57
    • Poli, R.1    Kennedy, J.2    Blackwell, T.3
  • 23
    • 44349195551 scopus 로고    scopus 로고
    • Analysis of the publications on the applications of particle swarm optimization
    • doi: 101135/2008/685175
    • Poli, R. (2008). Analysis of the publications on the applications of particle swarm optimization. Journal of Artificial Evolution and Applications. doi: 101135/2008/685175.
    • (2008) Journal of Artificial Evolution and Applications
    • Poli, R.1
  • 24
    • 3142768423 scopus 로고    scopus 로고
    • Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
    • Ratnaweera, A., Halgamuge, S. K., & Watson, H. C. (2004). Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation, 8, 240-255.
    • (2004) IEEE Transactions on Evolutionary Computation , vol.8 , pp. 240-255
    • Ratnaweera, A.1    Halgamuge, S.K.2    Watson, H.C.3
  • 25
    • 0942289503 scopus 로고    scopus 로고
    • Gear fault detection using artificial neural networks and support vector machines with genetic algorithms
    • Samanta, B. (2004a). Gear fault detection using artificial neural networks and support vector machines with genetic algorithms. Mechanical Systems and Signal Processing, 18, 625-644.
    • (2004) Mechanical Systems and Signal Processing , vol.18 , pp. 625-644
    • Samanta, B.1
  • 26
    • 2942560415 scopus 로고    scopus 로고
    • Artificial neural networks and genetic algorithms for gear fault detection
    • Samanta, B. (2004b). Artificial neural networks and genetic algorithms for gear fault detection. Mechanical Systems and Signal Processing, 18, 1273-1282.
    • (2004) Mechanical Systems and Signal Processing , vol.18 , pp. 1273-1282
    • Samanta, B.1
  • 27
    • 0037345899 scopus 로고    scopus 로고
    • Artificial neural network based fault diagnostics of rolling element bearings using time domain features
    • Samanta, B., & Al-Balushi, K. R. (2003). Artificial neural network based fault diagnostics of rolling element bearings using time domain features. Mechanical Systems and Signal Processing, 17, 317-328.
    • (2003) Mechanical Systems and Signal Processing , vol.17 , pp. 317-328
    • Samanta, B.1    Al-Balushi, K.R.2
  • 28
    • 0347526092 scopus 로고    scopus 로고
    • Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection
    • Samanta, B., Al-Balushi, K. R., & Al-Araimi, S. A. (2003). Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. Engineering Applications of Artificial Intelligence, 16, 657-665.
    • (2003) Engineering Applications of Artificial Intelligence , vol.16 , pp. 657-665
    • Samanta, B.1    Al-Balushi, K.R.2    Al-Araimi, S.A.3
  • 29
    • 29444460051 scopus 로고    scopus 로고
    • Artificial neural networks and genetic algorithm for bearing fault detection
    • Samanta, B., Al-Balushi, K. R., & Al-Araimi, S. A. (2006). Artificial neural networks and genetic algorithm for bearing fault detection. Journal of Soft Computing, 10, 264-271.
    • (2006) Journal of Soft Computing , vol.10 , pp. 264-271
    • Samanta, B.1    Al-Balushi, K.R.2    Al-Araimi, S.A.3
  • 30
    • 11644275559 scopus 로고    scopus 로고
    • SVMs - A practical consequence of learning theory
    • Scholkopf, B. (1998). SVMs - a practical consequence of learning theory. IEEE Intelligent Systems, 13, 18-21.
    • (1998) IEEE Intelligent Systems , vol.13 , pp. 18-21
    • Scholkopf, B.1
  • 33
    • 0037475094 scopus 로고    scopus 로고
    • The particle swarm optimization algorithm: Convergence analysis and parameter selection
    • Trelea, I. L. (2003). The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters, 85, 317-325.
    • (2003) Information Processing Letters , vol.85 , pp. 317-325
    • Trelea, I.L.1
  • 34
    • 0038281789 scopus 로고    scopus 로고
    • Analysis of particle swarm optimization
    • Ph.D. thesis, University of Pretoria, South Africa
    • Van den Bergh, F. (2002). Analysis of particle swarm optimization. Ph.D. thesis, University of Pretoria, South Africa.
    • (2002)
    • Van den Bergh, F.1
  • 35
    • 31944448941 scopus 로고    scopus 로고
    • A study of particle swarm optimization particle trajectories
    • Van den Bergh, F., & Engelbrecht, A. P. (2006). A study of particle swarm optimization particle trajectories. Information Sciences, 176, 937-971.
    • (2006) Information Sciences , vol.176 , pp. 937-971
    • Van den Bergh, F.1    Engelbrecht, A.P.2
  • 36
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10, 988-999.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , pp. 988-999
    • Vapnik, V.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.