메뉴 건너뛰기




Volumn 5651 LNAI, Issue , 2009, Pages 370-374

The role of biomedical dataset in classification

Author keywords

Biomedical Datasets; Classification; Complexity Measures

Indexed keywords

BIOMEDICAL DATASETS; CLASSIFICATION; CLASSIFICATION ACCURACY; COMPLEXITY MEASURES; DATA SETS; EMPIRICAL EQUATIONS; FEATURE SELECTION; INFORMATION GAIN; KNOWLEDGE EXTRACTION; MACHINE LEARNING ALGORITHMS; META MODEL; MISSING VALUES; NAIVE BAYES; RULE BASED;

EID: 70350220876     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-02976-9_51     Document Type: Conference Paper
Times cited : (18)

References (5)
  • 2
    • 67650649774 scopus 로고    scopus 로고
    • Guidelines to select machine learning scheme for classifcation of biomedical datasets
    • Pizzuti, C, Ritchie, M.D, Giacobini, M, eds, EVOBIO 2009, Springer, Heidelberg
    • Tanwani, A.K., Afridi, J., Shafiq, M.Z., Farooq, M.: Guidelines to select machine learning scheme for classifcation of biomedical datasets. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds.) EVOBIO 2009. LNCS, vol. 5483, pp. 128-139. Springer, Heidelberg (2009)
    • (2009) LNCS , vol.5483 , pp. 128-139
    • Tanwani, A.K.1    Afridi, J.2    Shafiq, M.Z.3    Farooq, M.4
  • 3
    • 70350250776 scopus 로고    scopus 로고
    • UCI repository of machine learning databases, University of California-Irvine, Department of Information and Computer Science, http://www.ics.uci.edu/~mlearn/MLRepository.html
    • UCI repository of machine learning databases, University of California-Irvine, Department of Information and Computer Science, http://www.ics.uci.edu/~mlearn/MLRepository.html


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.