메뉴 건너뛰기




Volumn 14, Issue 1, 2010, Pages 87-98

Regional low flow frequency analysis using Bayesian regression and prediction at ungauged catchment in Korea

Author keywords

Bayesian multiple regression; Bayesian prediction; Confidence interval using t distribution; Regional low flow frequency analysis; Uncertainty; Ungauged catchment

Indexed keywords

CATCHMENTS; FINANCIAL DATA PROCESSING; FORECASTING; LEAST SQUARES APPROXIMATIONS; REGRESSION ANALYSIS; RUNOFF;

EID: 70350220456     PISSN: 12267988     EISSN: 19763808     Source Type: Journal    
DOI: 10.1007/s12205-010-0087-7     Document Type: Article
Times cited : (20)

References (34)
  • 1
    • 0031946159 scopus 로고    scopus 로고
    • Approximate confidence intervals for quantiles of gamma and generalized gamma distributions
    • Ashkar, F. and Ouarda, T. B. M. J. (1998). Approximate confidence intervals for quantiles of gamma and generalized gamma distributions. Journal of Hydrologic Engineering, ASCE, Vol. 3, No. 1, pp. 43-51.
    • (1998) Journal of Hydrologic Engineering , vol.3 , Issue.1 , pp. 43-51
    • Ashkar, F.1    Ouarda, T.B.M.J.2
  • 2
    • 0026188607 scopus 로고
    • Confidence interval for design flood with estimated skew coefficient
    • Chowdhury, J. U. and Stedinger, J. R. (1991). Confidence interval for design flood with estimated skew coefficient. Journal of Hydraulic Engineering, ASCE., Vol. 117, No. 7, pp. 811-931.
    • (1991) Journal of Hydraulic Engineering , vol.117 , Issue.7 , pp. 811-931
    • Chowdhury, J.U.1    Stedinger, J.R.2
  • 3
    • 0034997286 scopus 로고    scopus 로고
    • Confidence intervals for expected moments algorithm flood quantile estimates
    • Cohn, T. A., Lane, W. L., and Stedinger, J. R. (2001). Confidence intervals for expected moments algorithm flood quantile estimates. Water Resources Research, Vol. 37, No, 6, pp. 1695-1706.
    • (2001) Water Resources Research , vol.37 , Issue.6 , pp. 1695-1706
    • Cohn, T.A.1    Lane, W.L.2    Stedinger, J.R.3
  • 4
    • 0030560555 scopus 로고    scopus 로고
    • Bayesian methods in extreme value modeling: A review and new developments
    • Coles, S. G. and Powell, E. A. (1996). Bayesian methods in extreme value modeling: A review and new developments. International Statistical Review, Vol. 64, No. 1, pp. 119-136.
    • (1996) International Statistical Review , vol.64 , Issue.1 , pp. 119-136
    • Coles, S.G.1    Powell, E.A.2
  • 5
    • 0030087555 scopus 로고    scopus 로고
    • Regionalization of low-flow frequency estimates: An Alabama case study
    • Durrans, S. R. and Tomic, S. (1996). Regionalization of low-flow frequency estimates: An Alabama case study. Water Resources Bulletin, Vol. 32, No. 1, pp. 23-37.
    • (1996) Water Resources Bulletin , vol.32 , Issue.1 , pp. 23-37
    • Durrans, S.R.1    Tomic, S.2
  • 6
    • 0032170701 scopus 로고    scopus 로고
    • Using regional regression within index flood procedures and an empirical Bayes estimator
    • Fill, H. D. and Stedinger, J. R. (1998). Using regional regression within index flood procedures and an empirical Bayes estimator. Journal of Hydrology, Vol. 210, pp. 128-145.
    • (1998) Journal of Hydrology , vol.210 , pp. 128-145
    • Fill, H.D.1    Stedinger, J.R.2
  • 7
    • 33646510313 scopus 로고    scopus 로고
    • Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory
    • W03407
    • Kavetski, D., Kuczera, G., and Fanks, S. W. (2006). Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory. Water Resources Research Vol. 42, W03407.
    • (2006) Water Resources Research , vol.42
    • Kavetski, D.1    Kuczera, G.2    Fanks, S.W.3
  • 8
    • 0028667096 scopus 로고
    • Probability distributions for flood warning systems
    • Kelly, K. S. and Krzysztofowicz, R. (1994). Probability distributions for flood warning systems. Water Resources Research, Vol. 30, No. 4, pp. 1145-1152.
    • (1994) Water Resources Research , vol.30 , Issue.4 , pp. 1145-1152
    • Kelly, K.S.1    Krzysztofowicz, R.2
  • 9
    • 31444455186 scopus 로고    scopus 로고
    • Bayesian training of artificial neural networks used for water resources modeling
    • W12409
    • Kingston, G. B., Lambert, M. F., and Maier, H. R. (2005). Bayesian training of artificial neural networks used for water resources modeling. Water Resources Research, Vol. 41, W12409.
    • (2005) Water Resources Research , vol.41
    • Kingston, G.B.1    Lambert, M.F.2    Maier, H.R.3
  • 10
    • 0020971827 scopus 로고
    • Why should forecaster and a decision maker use Bayes theorem
    • Krzysztofowicz, R. (1983a). Why should forecaster and a decision maker use Bayes theorem. Water Resources Research, Vol. 19, No. 2, pp. 327-336.
    • (1983) Water Resources Research , vol.19 , Issue.2 , pp. 327-336
    • Krzysztofowicz, R.1
  • 11
    • 0020969750 scopus 로고
    • A Bayesian Markov model of the flood forecast process
    • Krzysztofowicz, R. (1983b). A Bayesian Markov model of the flood forecast process. Water Resources Research, Vol. 19, No. 6, pp. 1455-1465.
    • (1983) Water Resources Research , vol.19 , Issue.6 , pp. 1455-1465
    • Krzysztofowicz, R.1
  • 12
    • 0032918166 scopus 로고    scopus 로고
    • Comprehensive at-site flood frequency analysis using Monte Carlo Bayesian inference
    • Kuczera, G. (1999). Comprehensive at-site flood frequency analysis using Monte Carlo Bayesian inference. Water Resources Research, Vol. 35, No. 5, pp. 1551-1557.
    • (1999) Water Resources Research , vol.35 , Issue.5 , pp. 1551-1557
    • Kuczera, G.1
  • 13
    • 0032214428 scopus 로고    scopus 로고
    • Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm
    • Kuczera, G. and Parent, E. (1998). Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm. Journal of Hydrology, Vol. 211, pp. 69-85.
    • (1998) Journal of Hydrology , vol.211 , pp. 69-85
    • Kuczera, G.1    Parent, E.2
  • 15
    • 47249117508 scopus 로고    scopus 로고
    • Identification of uncertainty in low flow frequency analysis using Bayesian MCMC method
    • Lee, K. S. and Kim, S. U. (2008). Identification of uncertainty in low flow frequency analysis using Bayesian MCMC method. Hydrological Processes, Vol. 22, pp. 1949-1964.
    • (2008) Hydrological Processes , vol.22 , pp. 1949-1964
    • Lee, K.S.1    Kim, S.U.2
  • 16
    • 0030618866 scopus 로고    scopus 로고
    • Generalized least squares and empirical Bayes estimation in regional partial duration series index flood modeling
    • Madsen, H. and Rojsberg, H. D. (1997). Generalized least squares and empirical Bayes estimation in regional partial duration series index flood modeling. Water Resources Research, Vol. 33, No. 4, pp. 771-781.
    • (1997) Water Resources Research , vol.33 , Issue.4 , pp. 771-781
    • Madsen, H.1    Rojsberg, H.D.2
  • 17
    • 70350232210 scopus 로고    scopus 로고
    • MOCTK-Water, Republic of Korea (In Korean): Kyeonggi-Do
    • MOCT and K-Water (2006). River basin investigation for the future, Kyeonggi-Do, Republic of Korea (In Korean).
    • (2006) River Basin Investigation for the Future
  • 18
  • 19
    • 0037376573 scopus 로고    scopus 로고
    • Bayesian POT modeling for historical data
    • Parent, E. P. and Bernier, J. (2003). Bayesian POT modeling for historical data. Journal of Hydrology, Vol. 274, pp. 95-108.
    • (2003) Journal of Hydrology , vol.274 , pp. 95-108
    • Parent, E.P.1    Bernier, J.2
  • 20
    • 26944484410 scopus 로고    scopus 로고
    • Bayesian MCMC flood frequency analysis with historical information
    • Reis, Jr. D. S. and Stedinger, J. R. (2005). Bayesian MCMC flood frequency analysis with historical information. Journal of Hydrology, Vol. 313, pp. 97-116.
    • (2005) Journal of Hydrology , vol.313 , pp. 97-116
    • Reis Jr., D.S.1    Stedinger, J.R.2
  • 21
    • 28244446739 scopus 로고    scopus 로고
    • Bayesian generalized least squares regression with application to log Pearson type III regional skew estimation
    • W10419
    • Reis, Jr. D. S., Stedinger, J. R., and Martins, E. S. (2005). Bayesian generalized least squares regression with application to log Pearson type III regional skew estimation. Water Resources Research, Vol. 41, W10419.
    • (2005) Water Resources Research , vol.41
    • Reis Jr., D.S.1    Stedinger, J.R.2    Martins, E.S.3
  • 22
    • 33846401198 scopus 로고    scopus 로고
    • A parametric Bayesian combination of local and regional information in flood frequency analysis
    • W11408
    • Seidou, O., Ouarda, T. B. M. J., Barbet, M., Bruneau, P., and Bobee, B. (2006). A parametric Bayesian combination of local and regional information in flood frequency analysis. Water Resources Research, Vol. 42, W11408.
    • (2006) Water Resources Research , vol.42
    • Seidou, O.1    Ouarda, T.B.M.J.2    Barbet, M.3    Bruneau, P.4    Bobee, B.5
  • 24
    • 0020549890 scopus 로고
    • Confidence intervals for design events
    • Stedinger, J. R. (1983). Confidence intervals for design events. Journal of Hydraulic Engineering, ASCE, Vol. 109, No. 1, pp. 13-27.
    • (1983) Journal of Hydraulic Engineering , vol.109 , Issue.1 , pp. 13-27
    • Stedinger, J.R.1
  • 27
    • 0034794967 scopus 로고    scopus 로고
    • Bayesian recursive parameter estimation for hydrologic models
    • Thiemann, M., Trosset, M., Gupta, H. V., and Sorooshian, S. (2001). Bayesian recursive parameter estimation for hydrologic models. Water Resources Research, Vol. 37, No. 10, pp. 2521-2535.
    • (2001) Water Resources Research , vol.37 , Issue.10 , pp. 2521-2535
    • Thiemann, M.1    Trosset, M.2    Gupta, H.V.3    Sorooshian, S.4
  • 28
    • 0016522035 scopus 로고
    • A Bayesian framework for the use of regional information in hydrology
    • Vicens, G. J., Rodriguez-Iturbe, I. and Schaake, Jr. J. C. (1975). A Bayesian framework for the use of regional information in hydrology. Water Resources Research. Vol. 11, No. 3, pp. 405-414.
    • (1975) Water Resources Research. , vol.11 , Issue.3 , pp. 405-414
    • Vicens, G.J.1    Rodriguez-Iturbe, I.2    Schaake Jr., J.C.3
  • 29
    • 1542757127 scopus 로고    scopus 로고
    • Shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters
    • Vrugt, J. A., Gupta, H. V., Bouten, W., and Sorooshian, S. (2003). Shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resources Research, Vol. 39, No. 8, SWC 1-16.
    • (2003) Water Resources Research , vol.39 , Issue.8 , pp. 1-16
    • Vrugt, J.A.1    Gupta, H.V.2    Bouten, W.3    Sorooshian, S.4
  • 30
    • 0035014975 scopus 로고    scopus 로고
    • A Bayesian joint probability approach for flood record augmentation
    • Wang, Q. J. (2001). A Bayesian joint probability approach for flood record augmentation. Water Resources Research, Vol. 37, No. 6, pp. 1707-1712.
    • (2001) Water Resources Research , vol.37 , Issue.6 , pp. 1707-1712
    • Wang, Q.J.1
  • 31
    • 0032920119 scopus 로고    scopus 로고
    • Approximate confidence intervals for design floods for a single site using a neural network
    • Whitley, R. J. and Hromadka, II. T. V. (1999). Approximate confidence intervals for design floods for a single site using a neural network. Water Resources Research, Vol. 35, No. 1, pp. 203-209.
    • (1999) Water Resources Research , vol.35 , Issue.1 , pp. 203-209
    • Whitley, R.J.1    Hromadka II, T.V.2
  • 32
    • 0016544456 scopus 로고
    • Bayesian inference and decision making for extreme hydrologic events
    • Wood, E. F. and Rodriguez-Iturbe, I. (1975a). Bayesian inference and decision making for extreme hydrologic events. Water Resources Research, Vol. 11, No. 4, pp. 533-542.
    • (1975) Water Resources Research , vol.11 , Issue.4 , pp. 533-542
    • Wood, E.F.1    Rodriguez-Iturbe, I.2
  • 33
    • 0016647131 scopus 로고
    • A Bayesian approach to analyze uncertainty among flood frequency models
    • Wood, E. F. and Rodriguez-Iturbe, I. (1975b). A Bayesian approach to analyze uncertainty among flood frequency models. Water Resources Research, Vol. 11, No. 6, pp. 839-843.
    • (1975) Water Resources Research , vol.11 , Issue.6 , pp. 839-843
    • Wood, E.F.1    Rodriguez-Iturbe, I.2
  • 34
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts and modular neural networks
    • Zhang, B. and Govindaraju, R. S. (2000). Prediction of watershed runoff using Bayesian concepts and modular neural networks. Water Resources Research, Vol. 36, No. 3, pp. 753-762.
    • (2000) Water Resources Research , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.